6  Estimate S

Now we come to the core part of our project: how can we estimate \(S\), without knowing \(\theta, \phi, k_j\)?

Basically, this is the data we have:

import pandas as pd 
output_dir = 'data'
df = pd.read_csv(f"{output_dir}/150|200_3.csv").drop(
    ['k_j', 'S_n', 'affected_or_not'], axis = 1)
df.head()
participant biomarker measurement diseased
0 0 HIP-FCI 3.135981 False
1 1 HIP-FCI 12.593704 True
2 2 HIP-FCI 6.220776 False
3 3 HIP-FCI 3.545100 False
4 4 HIP-FCI 3.966541 False

The main idea is this:

In the following, We will cover three different approaches to estimate \(S\):