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1 Introduction

You can also read the material in PDF.

The Event-Based Model (EBM; Fonteijn et al. (2012)) is a probabilistic model that can be
used to infer the order by which a disease affects the parts of a person’s body. In other words,
it allows us to estimate the stages by which different biological factors (“biomarkers”) are
affected by a disease.

For instance, Alzheimer’s may have the following stages:

Figure 1.1: Alzheimer’s Disease Progression (Credit: https://preventad.com/alzheimers-
disease/)

We estimate this order based on the biomarker data from patients’ visits. These data are
typically results of neuropsych (e.g., MMSE) and/or biological examinations (e.g., blood pres-
sure). Visits data can be longitudinal and/or cross-sectional, i.e., single visits from a cohort
of patients.

Knowing the disease progression is important because it helps prevent and hopefully cure the
disease (e.g., to identify critical points for intervention). It also helps health professionals
prepare for the disease’s further developments.

The EBM has been especially helpful at providing converging support for the stages of neural
deterioration of neural degenerative diseases. Neural diseases are notoriously complex for many
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reasons. For instance, they are difficult to study in vivo due to the challenge of direct and
accurate measurement of the brain at high resolution without harming the person.

By formulating the deterioration process as a probabilistic model, the EBM affords the ability
to conduct complex reasoning from noisy patient data. Given the difficulty of this task, it is un-
clear how much (number of participants) and what kind of data (healthy percentage) is needed
for reliable estimation and how to best understand the uncertainty of model estimates.

Although prior work (e.g., Fonteijn et al. (2012), Chen et al. (2016)) has not addressed the
former question in great detail, it has derived uncertainty of its estimates indirectly using
bootstrapping. In this monograph, we analyze the statistical consistency of different inference
methods for the EBM model. To foreshadow, our results are reassuring, yet troubling, and
promising. Inference methods used in prior work work well when there is a large number
of participants (~500) and the percentage of healthy participants is near 50%. However,
clinical studies with such large sample sizes are uncommon and so, in typical settings, the
prior approximation methods may be unreliable. We test our own method using Markov chain
Monte Carlo techniques and find it provides much more accurate estimates for small sample
sizes that are robust across different percentages of healthy participants. The results of our
analyses come with a caveat: they are based on simulated data. We discuss this caveat, other
limitations, and how to interpret our results in the monograph.

We have several assumptions in EBM:

Figure 1.2: Assumptions of EBM

• The disease is irreversible (i.e., a patient cannot go from stage 2 to stage 1)
• The order in which different biomarkers get affected by the disease is the same across all

patients.
• Biomarker data can be approximated by a Gaussian distribution.
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Pay Attention

The third assumption, i.e., Gaussian approximation, often will be violated in raw
biomarker data. For example, measurements of the concentration of amyloid pro-
teins associated with Alzheimer’s disease are necessarily non-negative. Further, their
resolution has changed over the decades.
However, for the purpose of our current method, we assume this is true. There are
nonparametric versions of the EBM, for example, KDE EBM

This book contains chapters that explain step by step how we use the event-based model to
estimate the order of disease progression based on cross-sectional patients’ biomarker data.
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2 EBM Explained

2.1 Overview of Event-Based Model (EBM)

EBM provides a statistical model to understand disease progression through biomarkers. Using
EBM, we can estimate the likelihood of biomarker measurements or generate synthetic data
of biomarker measurements.

EBM can be used in two main ways:

1. Calculate the likelihood of biomarker measurements
2. Generate biomarker measurements

2.2 Key Concepts

Suppose the order in which a disease affects biomarkers is 𝑆. For example, 𝑆 = [‘biomarker1’,
‘biomarker3’, ‘biomarker2’].

We also suppose biomarker measurements follow Gaussian distributions. When a biomarker is
affected by the disease, its distribution parameters (mean and standard deviation) are denoted
by 𝜃. If not affected, 𝜙.

The disease stage of a participant is 𝑘𝑗. To simplify things, let us assume the total number of
disease stages is equal to the number of biomarkers.

2.3 Calculate the Likelihood of Biomarker Measurements

Suppose we have one participant’s measurement data of five biomarkers:

Now, the question is:

What is the likelihood of this participant having this sequence of biomarker data,
given that we know 𝑆, 𝜃, 𝜙.
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Figure 2.1: Sample Data

As defined above, 𝑆 is the order in which different biomarkers get affected by the disease. It
is the column of 𝑆𝑛 in the above data.

𝜃 for each biomarker is the 𝜇 and 𝛼 of normal distribution of biomarker measurement when
the biomarker is affected by the disease.

𝜙 for each biomarker is the 𝜇 and 𝛼 of normal distribution of biomarker measurement when
the biomarker is NOT affected by the disease.

The column of participant is simply this participant’s identification in the data.

The column of affected_or_not refers to whether a biomarker is affected by the disease. It
is affected if 𝑘𝑗 ≥ 𝑆𝑛; otherwise, not affected. This column is not available if we do not have
access to the column of 𝑘𝑗, which stands for this participant’s disease stage.

The column of Diseased refers to whether this participant is healthy (i.e., 𝑘𝑗 = 0) or diseased
(i.e., 𝑘𝑗 ≥ 1).

In the following, we explain how to calculate this likelihood in two scenarios: (1) known 𝑘𝑗
and (2) unknown 𝑘𝑗.

2.3.1 Known 𝑘𝑗

𝑝(𝑋𝑗|𝑆, 𝑧𝑗 = 1, 𝑘𝑗) =
𝑘𝑗

∏
𝑖=1

𝑝(𝑋𝑆(𝑖)𝑗 ∣ 𝜃𝑆(𝑖))
⏟⏟⏟⏟⏟⏟⏟⏟⏟

Affected biomarker likelihood

𝑁
∏

𝑖=𝑘𝑗+1
𝑝(𝑋𝑆(𝑖)𝑗 ∣ 𝜙𝑆(𝑖))

⏟⏟⏟⏟⏟⏟⏟⏟⏟
Non-affected biomarker likelihood

(2.1)

This equation computes the likelihood of the observed biomarker data of a specific participant,
given that we know the disease stage this patient is at (𝑘𝑗).

• 𝑆 is an ordered array of biomarkers that are affected by the disease, for example,
[𝑏, 𝑎, 𝑑, 𝑐]. This means that biomarker 𝑏 is affected at stage 1. At stage 2, biomarker 𝑏
and 𝑎 will be affected.
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• 𝑆(𝑖) is the 𝑖𝑡ℎ biomarker according to 𝑆. For example 𝑆1 will be biomarker 𝑏.

• 𝑘𝑗 indicates the stage the patient is at, for example, 𝑘𝑗 = 2. This means that the disease
has affected biomarkers 𝑎 and 𝑏. Biomarker 𝑐 and 𝑑 have not been affected yet.

• 𝜃𝑆(𝑖) is the parameters for the probability density function (PDF) of observed value of
biomarker 𝑆(𝑖) when this biomarker has been affected by the disease. Let’s assume
this distribution is a Gaussian distribution with means of [45, 50, 55, 60] and a standard
deviation of 5 for biomarker 𝑏, 𝑎, 𝑑, and 𝑐.

• 𝜙𝑆(𝑖) is the parameters for the probability density function (PDF) of observed value of
biomarker 𝑆(𝑖) when this biomarker has NOT been affected by the disease. Let’s assume
this distribution is a Gaussian distribution with means of [25, 30, 35, 40] and a standard
deviation of 3 for biomarker 𝑏, 𝑎, 𝑑, and 𝑐.

• 𝑋𝑗 is an array representing the patient’s observed data for all biomarkers. Assume the
data is [77, 45, 53, 90] for biomarkers 𝑏, 𝑎, 𝑑, and 𝑐.

We assume that the patient is at stage 2 of this disease; hence 𝑘𝑗 = 2.

Next, we are going to calculate 𝑝(𝑋𝑗|𝑆, 𝑧𝑗 = 1, 𝑘𝑗):
When 𝑖 = 1, we have 𝑆(𝑖) = 𝑏 and 𝑋𝑆(𝑖)

= 𝑋𝑏 = 45. So

𝑝(𝑋𝑆(𝑖)
|𝜃𝑆(𝑖)) = 1

𝜎
√

2𝜋𝑒− 1
2 ( 𝑋𝑏−𝜇

𝜎 )
2

Because 𝑘𝑗 = 2, so biomarker 𝑏 and 𝑎 are affected. We should use the distribution of 𝜃𝑏;
therefore, we should plug in 𝜇 = 45, 𝜎 = 5 in the above equation.

We can do the same for 𝑖 = 2, 3, and 4.

So

𝑝(𝑋𝑗|𝑆, 𝑘𝑗 = 2) = 𝑝(𝑋𝑏|𝜃𝑏) × 𝑝(𝑋𝑎|𝜃𝑎) × 𝑝(𝑋𝑑|𝜙𝑑) × 𝑝(𝑋𝑐|𝜙𝑐)

The above is the likelihood of the given biomarker data when 𝑘𝑗 = 2.

Note that 𝑝(𝑋𝑏|𝜃𝑏) is probability density, a value of a probability density function at a specific
point; so it is not a probability itself.

Multiplying multiple probability densities will give us a likelihood.
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2.3.2 Unknown 𝑘𝑗

𝑃(𝑋𝑗|𝑆) =
𝑁

∑
𝑘𝑗=0

𝑃(𝑘𝑗)𝑝(𝑋𝑗 ∣ 𝑆, 𝑘𝑗) (2.2)

Suppose we have the same information above, except that we do not know at which disease
stage the patient is, i.e., we do not know 𝑘𝑗. We have the observed biomarker data: 𝑋𝑗 =
[77, 45, 53, 90]. And I wonder: what is the likelihood of seeing this specific observed data?

We assume that all five stages (including 𝑘𝑗 = 0) are equally likely.

We do not know 𝑘𝑗, so the best option is to calculate the “average” likelihood of all the
biomarker data.

Based on Equation 2.1, we can calculate the following:

𝐿1 = 𝑝(𝑋𝑗|𝑆, 𝑘𝑗 = 1)
𝐿2 = 𝑝(𝑋𝑗|𝑆, 𝑘𝑗 = 2)
𝐿3 = 𝑝(𝑋𝑗|𝑆, 𝑘𝑗 = 3)
𝐿4 = 𝑝(𝑋𝑗|𝑆, 𝑘𝑗 = 4)
If this participant is healthy, then we know 𝑘𝑗 = 0, therefore:

𝐿 = 𝐿0 = 𝑝(𝑋𝑗|𝑆, 𝑘𝑗 = 0) = 𝑝(𝑋𝑏|𝜙𝑏) × 𝑝(𝑋𝑎|𝜙𝑎) × 𝑝(𝑋𝑑|𝜙𝑑) × 𝑝(𝑋𝑐|𝜙𝑐)

If this participant is diseased but we do not know the actual 𝑘𝑗, we can estimate it this way

𝐿1 = 𝑝(𝑋𝑗|𝑆, 𝑘𝑗 = 1) = 𝑝(𝑋𝑏|𝜃𝑏) × 𝑝(𝑋𝑎|𝜙𝑎) × 𝑝(𝑋𝑑|𝜙𝑑) × 𝑝(𝑋𝑐|𝜙𝑐)

𝐿2 = 𝑝(𝑋𝑗|𝑆, 𝑘𝑗 = 2) = 𝑝(𝑋𝑏|𝜃𝑏) × 𝑝(𝑋𝑎|𝜃𝑎) × 𝑝(𝑋𝑑|𝜙𝑑) × 𝑝(𝑋𝑐|𝜙𝑐)

𝐿3 = 𝑝(𝑋𝑗|𝑆, 𝑘𝑗 = 3) = 𝑝(𝑋𝑏|𝜃𝑏) × 𝑝(𝑋𝑎|𝜃𝑎) × 𝑝(𝑋𝑑|𝜃𝑑) × 𝑝(𝑋𝑐|𝜙𝑐)

𝐿4 = 𝑝(𝑋𝑗|𝑆, 𝑘𝑗 = 4) = 𝑝(𝑋𝑏|𝜃𝑏) × 𝑝(𝑋𝑎|𝜃𝑎) × 𝑝(𝑋𝑑|𝜃𝑑) × 𝑝(𝑋𝑐|𝜃𝑐)

𝑃 (𝑘𝑗) is the prior likelihood of being at stage 𝑘. Event based models assume a uniform
prior on 𝑘𝑗. Therefore:

𝑃(𝑋𝑗|𝑧𝑗 = 1, 𝑆) = 1
4 (𝐿1 + 𝐿2 + 𝐿3 + 𝐿4)
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Tip

When this participant is diseased but we do not know the actual stage of this partici-
pant, the above method is useful also because it hints at the relative likelihood of each
possible stage. For example, if L2 is much larger than L1, L3, and L4, then we know this
participant is most likely to be at stage 2.

2.3.3 Extension

If we are more interested in the likelihood of a whole dataset consisting of all participants, we
multiply all participants’ likelihood: 𝐿 = 𝐿𝑃1

×𝐿𝑃2
×𝐿𝑃3

...×𝐿𝑃𝑗
. Because this number tends

to be very large, we take the natural log of 𝐿, i.e., ln(𝐿).

2.4 EBM as A Generative Model

We can use EBM to generate synthetic biomarker data if we know:

• The order (𝑆) in which different biomarkers get affected by the disease.
• Parameters (i.e., mean and standard deviation) of biomarkers’ distribution when they

are affected (𝜃) and not affected (𝜙) by the disease.
• Stages (𝑘𝑗) that each participant is in.

Data we can generate looks like Figure 2.1.

This data is from a single participant.

As we mentioned above, to generate this data, we need to know:

• 𝑆, i.e., the order of biomarkers. In the above example, 𝑆 is HIP-FCI, PCC-FCI, HIP-
GMI, FUS-GMI, FUS-FCI.

• 𝒩(𝜃𝜇, 𝜃𝜎) and 𝒩(𝜙𝜇, 𝜙𝜎) for each of the five biomarkers, which are known but not shown
directly here in the dataset.

• 𝑘𝑗, which is 2 in the above example.

We explain how this data is constructed in the following, column by column.

First, the participant id is 67. The biomarker indicates each of the five biomarkers examined
and measured. The measurement is the biomarkers’ measurement. k_j is the participant’s
stage. If this stage is above 0, it means Diseased = True. S_n indicates the 𝑛-th rank in the
order. If k_j < S_n, it means the participant’s stage hasn’t reached that biomarker’s rank;
therefore, this biomarker is not affected. If k_j >= S_n, then this biomarker is affected.
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If a biomarker is affected, then its measurement comes from 𝒩(𝜃𝜇, 𝜃𝜎) of that biomarker; if
not_affected, 𝒩(𝜙𝜇, 𝜙𝜎).

2.4.1 Generative Process

The generative process of biomarker measurements can be described as:

𝑋𝑛𝑗 ∣ 𝑆, 𝑘𝑗, 𝜃𝑛, 𝜙𝑛 ∼ 𝐼(𝑧𝑗 = 1)[𝐼(𝑆(𝑛) ≤ 𝑘𝑗) 𝑝(𝑋𝑛𝑗 ∣ 𝜃𝑛)

+ 𝐼(𝑆(𝑛) > 𝑘𝑗) 𝑝(𝑋𝑛𝑗 ∣ 𝜙𝑛)]

+ (1 − 𝐼(𝑧𝑗 = 1)) 𝑝(𝑋𝑛𝑗 ∣ 𝜙𝑛)

(2.3)

This model says that given that we know 𝑆, 𝑘𝑗, 𝜃𝑛, and 𝜙𝑛, we can draw the biomarker mea-
surement from a distribution.

𝑆 ∼ UniformPermutation(⋅)
𝑆 follows a distribution of uniform permutation. That means the ordering of biomarkers is
random.

𝑘𝑗 ∼ DiscreteUniform(𝑁)
𝑘𝑗 follows a discrete uniform distribution, which means a participant is equally likely to fall in
a progression stage (e.g., from 0 to 5, where 0 indicates this participant is healthy.)

2.4.2 Graphical Explanation

In the following, we explain the generative model in three different scenarios using graphical
models: (1) All participants are healthy; (2) Both healthy and diseased participants, but all
biomarkers are affected among diseased people; (3) Both healthy and diseased participants,
but we do not whether biomarkers are affected or not among patients.

2.4.2.1 Scenario 1

If all participants are healthy:

𝑋𝑛𝑗 ∼ 𝑝(𝑋𝑛𝑗 ∣ 𝜙𝑛) (2.4)

Where

𝑋𝑛𝑗 indicates the measurement of biomarker 𝑛 in participant 𝑗.
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𝜙𝑛 represents 𝒩(𝜙𝜇, 𝜙𝜎) for biomarker 𝑛.

The graphical model would look like:

Figure 2.2: Graphical Model of Scenario 1

2.4.2.2 Scenario 2

If we have both diseased and healthy participants, and all biomarkers are affected among
deceased participants.

𝑋𝑛𝑗 ∼ 𝐼(𝑧𝑗 == 1)𝑝(𝑋𝑛𝑗 ∣ 𝜃𝑛) + (1 − 𝐼(𝑧𝑗 == 1))𝑝(𝑋𝑛𝑗 ∣ 𝜙𝑛) (2.5)

Where:

𝑧𝑗 = 1 indicates this participant is diseased and 𝑧𝑗 = 1 represents a healthy participant.

𝐼(𝑇 𝑟𝑢𝑒) = 1 and 𝐼(𝐹𝑎𝑙𝑠𝑒) = 0.

𝜃𝑛 represents 𝒩(𝜃𝜇, 𝜃𝜎) for biomarker 𝑛.

The graphical model would look like:

2.4.2.3 Scenario 3

If we have both healthy and diseased participants, but we do not know whether biomarkers
are affected or not among patients, see Equation 2.3.

This is the model in usual cases.

The graphical model looks like:
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Figure 2.3: Graphical Model of Scenario 2

Figure 2.4: Graphical Model of Scenario 3
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3 Generate Synthetic Data

In this chapter, we talk about how we generate the synthetic data of participants’ biomarker
measurements. These data are used to test our algorithms.

3.1 Obtain Estimated Distribution Parameters

In Section 2.4, we mentioned that EBM can be used as a generative model and we need to
know 𝑆, 𝜃, 𝜙 and 𝑘𝑗.

First, we obtained 𝑆, 𝜃, 𝜙 from Chen et al. (2016):

Figure 3.1: Theta and Phi from Chen’s Paper

This is our estimation:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import json
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Figure 3.2: S from Chen’s Paper

import scipy.stats as stats
from typing import List, Optional, Tuple, Dict
import os
import seaborn as sns
import altair as alt

all_ten_biomarker_names = np.array([
'MMSE', 'ADAS', 'AB', 'P-Tau', 'HIP-FCI',
'HIP-GMI', 'AVLT-Sum', 'PCC-FCI', 'FUS-GMI', 'FUS-FCI'])

# in the order above
# cyan, normal
phi_means = [28, -6, 250, -25, 5, 0.4, 40, 12, 0.6, -10]
# black, abnormal
theta_means = [22, -20, 150, -50, -5, 0.3, 20, 5, 0.5, -20]
# cyan, normal
phi_std_times_three = [2, 4, 150, 50, 5, 0.7, 45, 12, 0.2, 10]
phi_stds = [std_dev/3 for std_dev in phi_std_times_three]
# black, abnormal
theta_std_times_three = [8, 12, 50, 100, 20, 1, 20, 10, 0.2, 18]
theta_stds = [std_dev/3 for std_dev in theta_std_times_three]
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# to get the real_theta_phi means and stds
hashmap_of_dicts = {}
for i, biomarker in enumerate(all_ten_biomarker_names):

dic = {}
# dic = {"biomarker": biomarker}
dic['theta_mean'] = theta_means[i]
dic['theta_std'] = theta_stds[i]
dic['phi_mean'] = phi_means[i]
dic['phi_std'] = phi_stds[i]
hashmap_of_dicts[biomarker] = dic

hashmap_of_dicts

real_theta_phi = pd.DataFrame(hashmap_of_dicts).transpose().reset_index(names=['biomarker'])
real_theta_phi

biomarker theta_mean theta_std phi_mean phi_std
0 MMSE 22.0 2.666667 28.0 0.666667
1 ADAS -20.0 4.000000 -6.0 1.333333
2 AB 150.0 16.666667 250.0 50.000000
3 P-Tau -50.0 33.333333 -25.0 16.666667
4 HIP-FCI -5.0 6.666667 5.0 1.666667
5 HIP-GMI 0.3 0.333333 0.4 0.233333
6 AVLT-Sum 20.0 6.666667 40.0 15.000000
7 PCC-FCI 5.0 3.333333 12.0 4.000000
8 FUS-GMI 0.5 0.066667 0.6 0.066667
9 FUS-FCI -20.0 6.000000 -10.0 3.333333

Store the parameters to a JSON file:

with open('files/real_theta_phi.json', 'w') as fp:
json.dump(hashmap_of_dicts, fp)

biomarkers = all_ten_biomarker_names
n_biomarkers = len(biomarkers)

def plot_distribution_pair(ax, mu1, sigma1, mu2, sigma2, title):
"""mu1, sigma1: theta
mu2, sigma2: phi
"""
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xmin = min(mu1 - 4*sigma1, mu2-4*sigma2)
xmax = max(mu1 + 4*sigma1, mu2 + 4*sigma2)
x = np.linspace(xmin, xmax, 1000)
y1 = stats.norm.pdf(x, loc = mu1, scale = sigma1)
y2 = stats.norm.pdf(x, loc = mu2, scale = sigma2)
ax.plot(x, y1, label = "Abnormal", color = "black")
ax.plot(x, y2, label = "Normal", color = "cyan")
ax.fill_between(x, y1, alpha = 0.3, color = "black")
ax.fill_between(x, y2, alpha = 0.3, color = "cyan")
ax.set_title(title)
ax.legend()

fig, axes = plt.subplots(2, n_biomarkers//2, figsize=(20, 10))
for i, biomarker in enumerate(biomarkers):

ax = axes.flatten()[i]
mu1, sigma1, mu2, sigma2 = real_theta_phi[

real_theta_phi.biomarker == biomarker].reset_index().iloc[0, :][2:].values
plot_distribution_pair(

ax, mu1, sigma1, mu2, sigma2, title = biomarker)

Figure 3.3: evaluate theta and phi estimations

You can compare this to Figure 3.1.
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3.2 The Generating Process

In the following, we explain our data generation process.

We have the following parameters:

𝐽 : Number of participants.

𝑅: The percentage of healthy participants.

𝑀 : Number of datasets per combination of 𝑗 and 𝑟.

We set these parameters:

js = [50, 200, 500]
rs = [0.1, 0.25, 0.5, 0.75, 0.9]
num_of_datasets_per_combination = 50

So, there will be 3 × 5 × 50 = 750 datasets to be generated.

We define our generate_data_from_ebm function:

def generate_data_from_ebm(
n_participants: int,
S_ordering: List[str],
real_theta_phi_file: str,
healthy_ratio: float,
output_dir: str,
m, # combstr_m
seed: Optional[int] = 0

) -> pd.DataFrame:
"""
Simulate an Event-Based Model (EBM) for disease progression.

Args:
n_participants (int): Number of participants.
S_ordering (List[str]): Biomarker names ordered according to the order

in which each of them get affected by the disease.
real_theta_phi_file (str): Directory of a JSON file which contains

theta and phi values for all biomarkers.
See real_theta_phi.json for example format.

output_dir (str): Directory where output files will be saved.
healthy_ratio (float): Proportion of healthy participants out of n_participants.
seed (Optional[int]): Seed for the random number generator for reproducibility.
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Returns:
pd.DataFrame: A DataFrame with columns 'participant', "biomarker", 'measurement',

'diseased'.
"""
# Parameter validation
assert n_participants > 0, "Number of participants must be greater than 0."
assert 0 <= healthy_ratio <= 1, "Healthy ratio must be between 0 and 1."

# Set the seed for numpy's random number generator
rng = np.random.default_rng(seed)

# Load theta and phi values from the JSON file
try:

with open(real_theta_phi_file) as f:
real_theta_phi = json.load(f)

except FileNotFoundError:
raise FileNotFoundError(f"File {real_theta_phi} not fount")

except json.JSONDecodeError:
raise ValueError(

f"File {real_theta_phi_file} is not a valid JSON file.")

n_biomarkers = len(S_ordering)
n_stages = n_biomarkers + 1

n_healthy = int(n_participants * healthy_ratio)
n_diseased = int(n_participants - n_healthy)

# Generate disease stages
kjs = np.concatenate((np.zeros(n_healthy, dtype=int),

rng.integers(1, n_stages, n_diseased)))
# shuffle so that it's not 0s first and then disease stages bur all random
rng.shuffle(kjs)

# Initiate biomarker measurement matrix (J participants x N biomarkers) with None
X = np.full((n_participants, n_biomarkers), None, dtype=object)

# Create distributions for each biomarker
theta_dist = {biomarker: stats.norm(

real_theta_phi[biomarker]['theta_mean'],
real_theta_phi[biomarker]['theta_std']

) for biomarker in S_ordering}
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phi_dist = {biomarker: stats.norm(
real_theta_phi[biomarker]['phi_mean'],
real_theta_phi[biomarker]['phi_std']

) for biomarker in S_ordering}

# Populate the matrix with biomarker measurements
for j in range(n_participants):

for n, biomarker in enumerate(S_ordering):
# because for each j, we generate X[j, n] in the order of S_ordering,
# the final dataset will have this ordering as well.
k_j = kjs[j]
S_n = n + 1

# Assign biomarker values based on the participant's disease stage
# affected, or not_affected, is regarding the biomarker, not the participant
if k_j >= 1:

if k_j >= S_n:
# rvs() is affected by np.random()
X[j, n] = (

j, biomarker, theta_dist[biomarker].rvs(random_state=rng), k_j, S_n, 'affected')
else:

X[j, n] = (j, biomarker, phi_dist[biomarker].rvs(random_state=rng),
k_j, S_n, 'not_affected')

# if the participant is healthy
else:

X[j, n] = (j, biomarker, phi_dist[biomarker].rvs(random_state=rng),
k_j, S_n, 'not_affected')

df = pd.DataFrame(X, columns=S_ordering)
# make this dataframe wide to long
df_long = df.melt(var_name="Biomarker", value_name="Value")
data = df_long['Value'].apply(pd.Series)
data.columns = ['participant', "biomarker",

'measurement', 'k_j', 'S_n', 'affected_or_not']

# biomarker_name_change_dic = dict(
# zip(S_ordering, range(1, n_biomarkers + 1)))
data['diseased'] = data.apply(lambda row: row.k_j > 0, axis=1)
# data.drop(['k_j', 'S_n', 'affected_or_not'], axis=1, inplace=True)
# data['biomarker'] = data.apply(
# lambda row: f"{row.biomarker} ({biomarker_name_change_dic[row.biomarker]})", axis=1)
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if not os.path.exists(output_dir):
os.makedirs(output_dir)

filename = f"{int(healthy_ratio*n_participants)}|{n_participants}_{m}"
data.to_csv(f'{output_dir}/{filename}.csv', index=False)
# print("Data generation done! Output saved to:", filename)
return data

S_ordering = np.array([
'HIP-FCI', 'PCC-FCI', 'AB', 'P-Tau', 'MMSE', 'ADAS',
'HIP-GMI', 'AVLT-Sum', 'FUS-GMI', 'FUS-FCI'

])

# where the generated data will be saved
output_dir = 'data'

# We run the following only once; once the data is generated, we no longer run it
# We still show the codes to present our generation process
torun = False

if torun:
real_theta_phi_file = 'files/real_theta_phi.json'
for j in js:

for r in rs:
for m in range(0, num_of_datasets_per_combination):

generate_data_from_ebm(
n_participants=j,
S_ordering=S_ordering,
real_theta_phi_file=real_theta_phi_file,
healthy_ratio=r,
output_dir=output_dir,
m=m,
seed = int(j*10 + (r * 100) + m),

)
print(f'Done for J={j}')

3.3 Visualize Synthetic Data

Above, we have generated 750 datasets, named in the fashion of 150|200_3, which means the
third dataset when 𝑗 = 200 and 𝑟 = 0.75.
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Next, we try to visualize this dataset.

df = pd.read_csv(f"{output_dir}/150|200_3.csv")
df.head()

participant biomarker measurement k_j S_n affected_or_not diseased
0 0 HIP-FCI 3.135981 0 1 not_affected False
1 1 HIP-FCI 12.593704 2 1 affected True
2 2 HIP-FCI 6.220776 0 1 not_affected False
3 3 HIP-FCI 3.545100 0 1 not_affected False
4 4 HIP-FCI 3.966541 0 1 not_affected False

df.shape

(2000, 7)

This dataset has 2000 rows because we have 200 participants and 10 biomarkers.

3.3.1 Distribution of all biomarker values

alt.renderers.enable('png')
alt.Chart(df).transform_density(

'measurement',
as_=['measurement', 'Density'],
groupby=['biomarker']

).mark_area().encode(
x="measurement:Q",
y="Density:Q",
facet = alt.Facet(

"biomarker:N",
columns = 5

),
color=alt.Color(

'biomarker:N'
)

).properties(
width= 100,
height = 180,
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).properties(
title='Distribution of biomarker measurments'

)

Figure 3.4: Distribution of biomarker measurments

3.3.2 Distribution of A Specific Biomarker

idx = 1
biomarkers = df.biomarker.unique()
bio_data = df[df.biomarker==biomarkers[idx]]

24



alt.Chart(bio_data).transform_density(
'measurement',
as_=['measurement', 'Density'],
groupby=['affected_or_not']

).mark_area().encode(
x="measurement:Q",
y="Density:Q",
facet = alt.Facet(

"affected_or_not:N",
),
color=alt.Color(

'affected_or_not:N'
)

).properties(
width= 240,
height = 200,

).properties(
title=f'Distribution of {biomarker} measurements'

)

Figure 3.5: Distribution of HIP-FCI measurements, compring bewteen affected and non-
affected group
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3.3.3 Looking into A Specific Participant

pidx = 1
p_data = df[df.participant == pidx]
p_data

participant biomarker measurement k_j S_n affected_or_not diseased
1 1 HIP-FCI 12.593704 2 1 affected True
201 1 PCC-FCI 7.164017 2 2 affected True
401 1 AB 182.033823 2 3 not_affected True
601 1 P-Tau -25.345325 2 4 not_affected True
801 1 MMSE 27.600823 2 5 not_affected True
1001 1 ADAS -4.920415 2 6 not_affected True
1201 1 HIP-GMI 0.099052 2 7 not_affected True
1401 1 AVLT-Sum 30.270797 2 8 not_affected True
1601 1 FUS-GMI 0.658954 2 9 not_affected True
1801 1 FUS-FCI -11.701559 2 10 not_affected True

pidx =1 # participant index
p_data = df[df.participant == pidx]
alt.Chart(p_data).mark_bar().encode(

x='biomarker',
y='measurement',
color=alt.Color(

'affected_or_not:N'
),
tooltip=['biomarker', 'affected_or_not', 'measurement']

).interactive().properties(
title=f'Distribution of biomarker measurements for participant #{idx} (k_j = {p_data.k_j.to_list()[0]})'

)
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Figure 3.6: Distribution of biomarker measurements for a specific participant
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4 Estimate Distribution Parameters

Given 𝑆, and a biomarker’s measurements, how can we estimate 𝒩(𝜃𝜇, 𝜃𝜎) and 𝒩(𝜙𝜇, 𝜙𝜎)?

import pandas as pd
import numpy as np
import altair as alt
import math
from scipy.stats import norm
from sklearn.cluster import AgglomerativeClustering
from typing import Dict
import json
from sklearn.cluster import KMeans
from collections import defaultdict
from scipy.stats import mode

output_dir = 'data'
df = pd.read_csv(f"{output_dir}/150|200_3.csv")
biomarkers = df.biomarker.unique()
idx = 1
biomarker_df = df[df.biomarker==biomarkers[idx]]
biomarker_df.sample(10)

participant biomarker measurement k_j S_n affected_or_not diseased
307 107 PCC-FCI 2.875619 10 2 affected True
360 160 PCC-FCI 14.765535 0 2 not_affected False
365 165 PCC-FCI 8.913005 0 2 not_affected False
354 154 PCC-FCI 11.380722 0 2 not_affected False
200 0 PCC-FCI 6.567299 0 2 not_affected False
285 85 PCC-FCI 11.371021 0 2 not_affected False
375 175 PCC-FCI 3.771693 9 2 affected True
203 3 PCC-FCI 14.266635 0 2 not_affected False
295 95 PCC-FCI 4.949612 0 2 not_affected False
299 99 PCC-FCI 17.490539 0 2 not_affected False
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biomarker_df.shape

(200, 7)

4.1 Hard K-Means

Tip

To use this algorithm, we only need to know (1) whether this participant is diseased; and
(2) each biomarker measurement.

The first method we can use is hard K-Means. We clustering a certain biomarker’s measure-
ments into two clusters. A clustering is successful if:

• There are two, and only two clusters.
• Each clustes has more than one element (This is to make sure that the standard deviation

of this biomarker’s theta or phi is non-zero)

Ideally, we wanted all healthy participants to be grouped into a single cluster, which is why
we initially tried using the constrained K-Means algorithm implemented by Babaki (2017).
However, the algorithm did not work as intended.

We therefore designed a hard k-means algorithm to satisfy our needs:

• We try hard K-Means multiple times; If the two above mentioned requirements are not
met, then

• We group the measurements into two random clusters; If the two above mentioned
requirements are still not met, then raise an error and stop.

def compute_theta_phi_for_biomarker(biomarker_df, max_attempt = 50, seed = None):
"""get theta and phi parameters for this biomarker
input:

- biomarker_df: a pd.dataframe of a specific biomarker
output:

- a tuple: theta_mean, theta_std, phi_mean, phi_std
"""
if seed is not None:

# Set the seed for numpy's random number generator
rng = np.random.default_rng(seed)

else:
rng = np.random
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n_clusters = 2
measurements = np.array(biomarker_df['measurement']).reshape(-1, 1)
healthy_df = biomarker_df[biomarker_df['diseased'] == False]

# clustering = AgglomerativeClustering(n_clusters=n_clusters, linkage='ward')
# predictions = clustering.fit_predict(measurements)

# # Verify that AgglomerativeClustering produced exactly 2 clusters with more than 1 member each
# cluster_counts = np.bincount(predictions) # array([3, 2])
# if len(cluster_counts) != n_clusters or any(c <= 1 for c in cluster_counts):
# print("AgglomerativeClustering did not yield the required clusters, switching to KMeans.")
# # If AgglomerativeClustering fails, attempt KMeans with a max_attempt limit

curr_attempt = 0
n_init_value = 10
clustering_setup = KMeans(n_clusters=n_clusters, n_init=n_init_value)

while curr_attempt < max_attempt:
clustering_result = clustering_setup.fit(measurements)
predictions = clustering_result.labels_
cluster_counts = np.bincount(predictions) # array([3, 2])

if len(cluster_counts) == n_clusters and all(c > 1 for c in cluster_counts):
break

curr_attempt += 1
else:

print(f"KMeans failed. Try randomizing the predictions")
predictions = rng.choice([0, 1], size=len(measurements))
cluster_counts = np.bincount(predictions)
if len(cluster_counts) != n_clusters or not all(c > 1 for c in cluster_counts):

raise ValueError(f"KMeans clustering failed to find valid clusters within max_attempt.")

healthy_predictions = predictions[healthy_df.index]
mode_result = mode(healthy_predictions, keepdims=False).mode
phi_cluster_idx = mode_result[0] if isinstance(mode_result, np.ndarray) else mode_result
theta_cluster_idx = 1 - phi_cluster_idx

# two empty clusters to strore measurements
clustered_measurements = [[] for _ in range(2)]
# Store measurements into their cluster
for i, prediction in enumerate(predictions):

clustered_measurements[prediction].append(measurements[i][0])
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# Calculate means and standard deviations
theta_mean, theta_std = np.mean(

clustered_measurements[theta_cluster_idx]), np.std(
clustered_measurements[theta_cluster_idx])

phi_mean, phi_std = np.mean(
clustered_measurements[phi_cluster_idx]), np.std(

clustered_measurements[phi_cluster_idx])

# Check for invalid values
if any(np.isnan(v) or v == 0 for v in [theta_std, phi_std, theta_mean, phi_mean]):

raise ValueError("One of the calculated values is invalid (0 or NaN).")

return theta_mean, theta_std, phi_mean, phi_std

def get_theta_phi_estimates(
data: pd.DataFrame,

) -> Dict[str, Dict[str, float]]:
"""
Obtain theta and phi estimates (mean and standard deviation) for each biomarker.

Args:
data (pd.DataFrame): DataFrame containing participant data with columns 'participant',

'biomarker', 'measurement', and 'diseased'.
# biomarkers (List[str]): A list of biomarker names.

Returns:
Dict[str, Dict[str, float]]: A dictionary where each key is a biomarker name,

and each value is another dictionary containing the means and standard deviations
for theta and phi of that biomarker, with keys 'theta_mean', 'theta_std', 'phi_mean',
and 'phi_std'.

"""
# empty hashmap of dictionaries to store the estimates
estimates = {}
biomarkers = data.biomarker.unique()
for biomarker in biomarkers:

# Filter data for the current biomarker
# reset_index is necessary here because we will use healthy_df.index later
biomarker_df = data[data['biomarker']

== biomarker].reset_index(drop=True)
theta_mean, theta_std, phi_mean, phi_std = compute_theta_phi_for_biomarker(

biomarker_df)
estimates[biomarker] = {
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'theta_mean': theta_mean,
'theta_std': theta_std,
'phi_mean': phi_mean,
'phi_std': phi_std

}
return estimates

hard_kmeans_estimates = get_theta_phi_estimates(data = df)
hard_kmeans_estimates_df = pd.DataFrame.from_dict(

hard_kmeans_estimates, orient='index')
hard_kmeans_estimates_df.reset_index(names = 'biomarker', inplace=True)
hard_kmeans_estimates_df

biomarker theta_mean theta_std phi_mean phi_std
0 HIP-FCI -8.587833 5.365053 4.903437 2.008974
1 PCC-FCI 7.288870 2.797150 14.569768 2.274322
2 AB 173.199732 33.778905 277.009573 34.503492
3 P-Tau -49.329924 15.988080 -15.568346 12.688703
4 MMSE 22.272803 1.624078 28.011392 0.805532
5 ADAS -20.582091 3.853234 -6.002048 1.487443
6 HIP-GMI 0.576991 0.157259 0.192231 0.128850
7 AVLT-Sum 27.808002 8.561387 52.524815 7.989840
8 FUS-GMI 0.519974 0.047474 0.628440 0.038051
9 FUS-FCI -7.061708 1.928477 -12.647345 2.927590

with open('files/real_theta_phi.json', 'r') as f:
truth = json.load(f)

truth_df = pd.DataFrame.from_dict(truth, orient='index')
truth_df.reset_index(names = 'biomarker', inplace=True)
truth_df

biomarker theta_mean theta_std phi_mean phi_std
0 MMSE 22.0 2.666667 28.0 0.666667
1 ADAS -20.0 4.000000 -6.0 1.333333
2 AB 150.0 16.666667 250.0 50.000000
3 P-Tau -50.0 33.333333 -25.0 16.666667
4 HIP-FCI -5.0 6.666667 5.0 1.666667
5 HIP-GMI 0.3 0.333333 0.4 0.233333
6 AVLT-Sum 20.0 6.666667 40.0 15.000000
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biomarker theta_mean theta_std phi_mean phi_std
7 PCC-FCI 5.0 3.333333 12.0 4.000000
8 FUS-GMI 0.5 0.066667 0.6 0.066667
9 FUS-FCI -20.0 6.000000 -10.0 3.333333

Now let’s compare the results using plots:

def obtain_theta_phi_params(biomarker, estimate_df, truth):
'''This is to obtain both true and estimated theta and phi params for each biomarker '''
biomarker_data_est = estimate_df[estimate_df.biomarker == biomarker].reset_index()
biomarker_data = truth[truth.biomarker == biomarker].reset_index()
# theta for affected
theta_mean_est = biomarker_data_est.theta_mean[0]
theta_std_est = biomarker_data_est.theta_std[0]

theta_mean = biomarker_data.theta_mean[0]
theta_std = biomarker_data.theta_std[0]

# phi for not affected
phi_mean_est = biomarker_data_est.phi_mean[0]
phi_std_est = biomarker_data_est.phi_std[0]

phi_mean = biomarker_data.phi_mean[0]
phi_std = biomarker_data.phi_std[0]

return theta_mean, theta_std, theta_mean_est, theta_std_est, phi_mean, phi_std, phi_mean_est, phi_std_est

def make_chart(biomarkers, estimate_df, truth, title):
alt.renderers.enable('png')
charts = []
for biomarker in biomarkers:

theta_mean, theta_std, theta_mean_est, theta_std_est, phi_mean, phi_std, phi_mean_est, phi_std_est = obtain_theta_phi_params(
biomarker, estimate_df, truth)
mean1, std1 = theta_mean, theta_std
mean2, std2 = theta_mean_est, theta_std_est

# Generating points on the x axis
x_thetas = np.linspace(min(mean1 - 3*std1, mean2 - 3*std2),

max(mean1 + 3*std1, mean2 + 3*std2), 1000)

# Creating DataFrames for each distribution
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df1 = pd.DataFrame({'x': x_thetas, 'pdf': norm.pdf(x_thetas, mean1, std1), 'Distribution': 'Actual'})
df2 = pd.DataFrame({'x': x_thetas, 'pdf': norm.pdf(x_thetas, mean2, std2), 'Distribution': 'Estimated'})

# Combining the DataFrames
df3 = pd.concat([df1, df2])

# Altair plot
chart_theta = alt.Chart(df3).mark_line().encode(

x='x',
y='pdf',
color=alt.Color('Distribution:N', legend=alt.Legend(title="Theta"))

).properties(
title=f'{biomarker}, Theta',
width=100,
height=100
)

mean1, std1 = phi_mean, phi_std
mean2, std2 = phi_mean_est, phi_std_est

# Generating points on the x axis
x_phis = np.linspace(min(mean1 - 3*std1, mean2 - 3*std2),

max(mean1 + 3*std1, mean2 + 3*std2), 1000)

# Creating DataFrames for each distribution
df1 = pd.DataFrame({'x': x_phis, 'pdf': norm.pdf(x_phis, mean1, std1), 'Distribution': 'Actual'})
df2 = pd.DataFrame({'x': x_phis, 'pdf': norm.pdf(x_phis, mean2, std2), 'Distribution': 'Estimated'})

# Combining the DataFrames
df3 = pd.concat([df1, df2])

# Altair plot
chart_phi = alt.Chart(df3).mark_line().encode(

x='x',
y='pdf',
color=alt.Color('Distribution:N', legend=alt.Legend(title="Phi"))

).properties(
title=f'{biomarker}, Phi',
width=100,
height=100
)
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# Concatenate theta and phi charts horizontally
hconcat_chart = alt.hconcat(chart_theta, chart_phi).resolve_scale(color="independent")

# Append the concatenated chart to the list of charts
charts.append(hconcat_chart)

# Concatenate all the charts vertically
final_chart = alt.vconcat(*charts).properties(title = title)

# Display the final chart
final_chart.display()

make_chart(
biomarkers[0:5],
hard_kmeans_estimates_df,
truth_df,
title = "Comparing Theta and Phi Distributions Using hard k-means"

)
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Figure 4.1: Comparing Theta and Phi Distributions Using Simple Clusering
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It turns out the result is not very desriable.

4.2 Conjugate Priors

The second method we may utilize is conjugate priors. Conjugacy occurs when the posterior
distribution is in the same family of distribution as the prior distribution, but with new
parameter values.

Why conjugacy is important? Because without it, one has to do the integration, which often-
times is hard.

Three major conjugate families:

• Beta-Binomial
• Gamma-Poisson
• Normal-Normal

In our example, we assume that the measurement data for each biomarker follows a normal
distribution; however, we do not know the exact 𝜇 and 𝜎. Our job is to estimate the two
parameters for each biomarker based on the data we have.

According to An Introduction to Bayesian Thinking by Clyde et al. (2022), if the data comes
from a normal distribution with unknown 𝜇 and 𝜎, the conjugate prior for 𝜇 has a normal dis-
tribution with mean 𝑚0 and variance 𝜎2

𝑛0
. The conjugate prior for 1

𝜎2 has a Gamma distribution
with shape 𝑣0

2 and rate 𝑣0𝑠2
0

2 where

• 𝑚0: prior estimate of 𝜇.
• 𝑛0: how strongly is the prior belief in 𝑚0 is held.
• 𝑠2

0: prior estimate of 𝜎2.
• 𝑣0: prior degress of freedome, influencing the certainty of 𝑠2

0.

That is to say:

𝜇|𝜎2 ∼ 𝒩(𝑚0, 𝜎2/𝑛0)

1/𝜎2 ∼ 𝐺𝑎𝑚𝑚𝑎 (𝑣0
2 , 𝑣0𝑠2

0
2 )

Combined, we have:

(𝜇, 1/𝜎2) ∼ 𝑁𝑜𝑟𝑚𝑎𝑙𝐺𝑎𝑚𝑚𝑎(𝑚0, 𝑛0, 𝑠2
0, 𝑣0)
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The posterior also follows a Normal-Gamma distribution:

(𝜇, 1/𝜎2)|𝑑𝑎𝑡𝑎 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙𝐺𝑎𝑚𝑚𝑎(𝑚𝑛, 𝑛𝑛, 𝑠2
𝑛, 𝑣𝑛)

More specifically

1/𝜎2|𝑑𝑎𝑡𝑎 ∼ 𝐺𝑎𝑚𝑚𝑎(𝑣𝑛/2, 𝑠2
𝑛𝑣𝑛/2)

𝜇|𝑑𝑎𝑡𝑎, 𝜎2 ∼ 𝒩(𝑚𝑛, 𝜎2/𝑛𝑛)

Based on the above two equations, we know that the mean of posterior mean is 𝑚𝑛 and the
mean of the posterior variance is (𝑠2

𝑛𝑣𝑛/2)/(𝑣𝑛/2). This is beceause the expected value of
𝐺𝑎𝑚𝑚𝑎(𝛼, 𝛽) is 𝛼

𝛽 .

where

• 𝑚𝑛: posterior mean, mode, and median for 𝜇
• 𝑛𝑛: posterior sample size
• 𝑠2

𝑛: posterior variance
• 𝑣𝑛: posterior degrees of freedome

The updating rules to get the new hyper-parameters:

𝑚𝑛 = 𝑛
𝑛 + 𝑛0

̄𝑦 + 𝑛0
𝑛 + 𝑛0

𝑚0

𝑛𝑛 = 𝑛0 + 𝑛

𝑣𝑛 = 𝑣0 + 𝑛

𝑠2
𝑛 = 1

𝑣𝑛
[𝑠2(𝑛 − 1) + 𝑠2

0𝑣0 + 𝑛0𝑛
𝑛𝑛

( ̄𝑦 − 𝑚0)2]

where

• 𝑛: sample size
• ̄𝑦: sample mean
• 𝑠2: sample variance
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Tip

To apply the algorithm of conjugate priors, we assume we already know 𝑆 and 𝑘𝑗, along-
side biomarker measurement (𝑋𝑛𝑗). Based on 𝑆 and 𝑘𝑗, we can infer whether a biomarker
is affected by the disease or not.

def estimate_params_exact(m0, n0, s0_sq, v0, data):
'''This is to estimate means and vars based on conjugate priors
Inputs:

- data: a vector of measurements
- m0: prior estimate of $\mu$.
- n0: how strongly is the prior belief in $m_0$ is held.
- s0_sq: prior estimate of $\sigma^2$.
- v0: prior degress of freedome, influencing the certainty of $s_0^2$.

Outputs:
- mu estiate, std estimate

'''
# Data summary
sample_mean = np.mean(data)
sample_size = len(data)
sample_var = np.var(data, ddof=1) # ddof=1 for unbiased estimator

# Update hyperparameters for the Normal-Inverse Gamma posterior
updated_m0 = (n0 * m0 + sample_size * sample_mean) / (n0 + sample_size)
updated_n0 = n0 + sample_size
updated_v0 = v0 + sample_size
updated_s0_sq = (1 / updated_v0) * ((sample_size - 1) * sample_var + v0 * s0_sq +

(n0 * sample_size / updated_n0) * (sample_mean - m0)**2)
updated_alpha = updated_v0/2
updated_beta = updated_v0*updated_s0_sq/2

# Posterior estimates
mu_posterior_mean = updated_m0
sigma_squared_posterior_mean = updated_beta/updated_alpha

mu_estimation = mu_posterior_mean
std_estimation = np.sqrt(sigma_squared_posterior_mean)

return mu_estimation, std_estimation

def get_theta_phi_conjugate_priors(biomarkers, data_we_have, theta_phi_kmeans):
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'''To get estimated parameters, returns a hashmap
Input:
- biomarkers: biomarkers
- data_we_have: participants data filled with initial or updated participant_stages
- theta_phi_kmeans: a hashmap of dicts, which are the prior theta and phi values

obtained from the initial hard k-means algorithm

Output:
- a hashmap of dictionaries. Key is biomarker name and value is a dictionary.
Each dictionary contains the theta and phi mean/std values for a specific biomarker.
'''
# empty list of dictionaries to store the estimates
hashmap_of_means_stds_estimate_dicts = {}

for biomarker in biomarkers:
# Initialize dictionary outside the inner loop
dic = {'biomarker': biomarker}
for affected in ['affected', 'not_affected']:

data_full = data_we_have[(data_we_have.biomarker == biomarker) & (
data_we_have.affected_or_not == affected)]

if len(data_full) > 1:
measurements = data_full.measurement
s0_sq = np.var(measurements, ddof=1)
m0 = np.mean(measurements)
mu_estimate, std_estimate = estimate_params_exact(

m0=m0, n0=1, s0_sq=s0_sq, v0=1, data=measurements)
if affected == 'affected':

dic['theta_mean'] = mu_estimate
dic['theta_std'] = std_estimate

else:
dic['phi_mean'] = mu_estimate
dic['phi_std'] = std_estimate

# If there is only one observation or not observation at all, resort to theta_phi_kmeans
# YES, IT IS POSSIBLE THAT DATA_FULL HERE IS NULL
# For example, if a biomarker indicates stage of (num_biomarkers), but all participants' stages
# are smaller than that stage; so that for all participants, this biomarker is not affected
else:

print('not enough data here, so we have to use theta phi estimates from hard k-means')
# print(theta_phi_kmeans)
if affected == 'affected':

dic['theta_mean'] = theta_phi_kmeans[biomarker]['theta_mean']
dic['theta_std'] = theta_phi_kmeans[biomarker]['theta_std']
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else:
dic['phi_mean'] = theta_phi_kmeans[biomarker]['phi_mean']
dic['phi_std'] = theta_phi_kmeans[biomarker]['phi_std']

# print(f"biomarker {biomarker} done!")
hashmap_of_means_stds_estimate_dicts[biomarker] = dic

return hashmap_of_means_stds_estimate_dicts

conjugate_prior_theta_phi = get_theta_phi_conjugate_priors(
biomarkers = biomarkers,
data_we_have = df,
theta_phi_kmeans = hard_kmeans_estimates

)
cp_df = pd.DataFrame.from_dict(conjugate_prior_theta_phi, orient='index')
cp_df.reset_index(drop=True, inplace=True)
cp_df

biomarker theta_mean theta_std phi_mean phi_std
0 HIP-FCI -5.378366 7.233991 5.092800 1.514402
1 PCC-FCI 5.521792 2.777207 12.071769 3.671679
2 AB 151.143708 14.806694 251.973564 51.382188
3 P-Tau -41.768257 34.857945 -24.739527 14.928907
4 MMSE 23.122406 2.446874 28.049683 0.718493
5 ADAS -19.633304 4.582900 -5.902198 1.278311
6 HIP-GMI 0.425625 0.272876 0.379542 0.235348
7 AVLT-Sum 21.664360 3.755735 40.700638 14.480463
8 FUS-GMI 0.482745 0.055585 0.590434 0.063730
9 FUS-FCI -18.566905 5.781937 -9.648705 3.099195

Note

When we estimate 𝜃 and 𝜙 using conjugate priors, we need to use the result from hard
k-means as a fall back because it is possible that for a specific biomarker, either the
affected or the not_affected group is empty. If that is the case, we are not able to
estimate relevant parameters and have to resort to the fallback result.

make_chart(
biomarkers[0:5],
cp_df,
truth_df,
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title = "Comparing Theta and Phi Distributions Using Conjugate Priors"
)
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Figure 4.2: Comparing Theta and Phi Distributions Using Conjugate Prior
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4.3 Soft K-Means

Conjugate Priors assumes we know 𝑘𝑗, which often times is not already known. Our hard
k-means algorithm is only taking advantage of 𝑋𝑛𝑗 and whether participants are diseased or
not, leaving 𝑆, which is known to us, unexploited.

Soft K-Means is a good alternative to these two because it utilizes 𝑆 while at the same time
do not assume we know 𝑘𝑗.

The logic of soft-kmeans is this;

1. If a participant is diseased, we iterate through all possible disease stages, and calculate
the associated likelihood using Equation 2.1. We then normalize these likelihoods to
obtain the estimated probability of this participant being at each stage. For example, if
there are three possible stages, and the associated likelihoods are [1, 3, 6], then the
normalized likelihoods would be [0.1, 0.3, 0.6].

Tip

You may wonder how we can use Equation 2.1 when we do not know 𝜃 and 𝜙 yet (which
is exactly what we are trying to do!). If you notice this, it is a very keen observation!.
If fact, we are going to use the estimated 𝜃 and 𝜙 we obtained above using hard k-means.

2. For each biomarker 𝑛, we obtain 𝑆𝑛 based on 𝑆. Then we iterate through all participants.
If this participant is healthy, we include their biomarker measurement in cluster_phi.
If this participant is diseased, we compare between 𝑃𝜃 and 𝑃𝜙. If 𝑆𝑛 = 2, then 𝑃𝜃 =
0.1+0.3 = 0.4 and 𝑃𝜙 = 0.6. Because 𝑃𝜙 is larger, we include this participant’s biomarker
measurement in cluster_phi. When the iteration through participants is done, we can
calculate the mean and standard deviation of each cluster.

Tip

If 𝑃𝜃 = 𝑃𝜙, we randomly assign this participant’s biomarker measurement to a cluster.

def compute_single_measurement_likelihood(theta_phi, biomarker, affected, measurement):
'''Computes the likelihood of the measurement value of a single biomarker

We know the normal distribution defined by either theta or phi
and we know the measurement. This will give us the probability
of this given measurement value.

input:
- theta_phi: the dictionary containing theta and phi values for each biomarker
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- biomarker: an integer between 0 and 9
- affected: boolean
- measurement: the observed value for a biomarker in a specific participant

output: a scalar
'''
biomarker_dict = theta_phi[biomarker]
mu = biomarker_dict['theta_mean'] if affected else biomarker_dict['phi_mean']
std = biomarker_dict['theta_std'] if affected else biomarker_dict['phi_std']
var = std**2
if var <= int(0) or np.isnan(measurement) or np.isnan(mu):

print(f"Invalid values: measurement: {measurement}, mu: {mu}, var: {var}")
likelihood = np.exp(-(measurement - mu)**2 /

(2 * var)) / np.sqrt(2 * np.pi * var)
else:

likelihood = np.exp(-(measurement - mu)**2 /
(2 * var)) / np.sqrt(2 * np.pi * var)

return likelihood

def fill_up_kj_and_affected(pdata, k_j):
'''Fill up a single participant's data using k_j; basically add two columns:
k_j and affected
Note that this function assumes that pdata already has the S_n column

Input:
- pdata: a dataframe of ten biomarker values for a specific participant
- k_j: a scalar
'''
data = pdata.copy()
data['k_j'] = k_j
data['affected'] = data.apply(lambda row: row.k_j >= row.S_n, axis=1)
return data

def compute_likelihood(pdata, k_j, theta_phi):
'''
This function computes the likelihood of seeing this sequence of biomarker values
for a specific participant, assuming that this participant is at stage k_j
'''
data = fill_up_kj_and_affected(pdata, k_j)
likelihood = 1
for i, row in data.iterrows():

biomarker = row['biomarker']
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measurement = row['measurement']
affected = row['affected']
likelihood *= compute_single_measurement_likelihood(

theta_phi, biomarker, affected, measurement)
return likelihood

def obtain_participants_hashmap(
data,
prior_theta_phi_estimates,

):
"""
Input:

- data: a pd.dataframe. For exrample, 150|200_3.csv
- prior_theta_phi_estimates, a hashmap of dicts.

This is the result from hard k-means

Output:
- hashmap: a dictionary whose key is participant id

and value value is a dict whose key is stage
and value is normalized likelihood

"""
# initialize hashmap_of_normalized_stage_likelihood_dicts
participants_hashmap = {}
non_diseased_participants = data[

data.diseased == False]['participant'].unique()
disease_stages = data.S_n.unique()
for p in data.participant.unique():

dic = defaultdict(int)
pdata = data[data.participant == p].reset_index(drop = True)
if p in non_diseased_participants:

dic[0] = 1
else:

for k_j in disease_stages:
kj_ll = compute_likelihood(pdata, k_j, prior_theta_phi_estimates)
dic[k_j] = kj_ll

# likelihood sum
sum_ll = sum(dic.values())
epsilon = 1e-10
if sum_ll == 0:

sum_ll = epsilon
normalized_lls = [l/sum_ll for l in dic.values()]
normalized_ll_dict = dict(zip(disease_stages, normalized_lls))
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participants_hashmap[p] = normalized_ll_dict
return participants_hashmap

def calc_soft_kmeans_for_biomarker(
data,
biomarker,
participants_hashmap

):
"""obtain theta, phi estimates using soft kmeans for a single biomarker
Inputs:

- data: a pd.dataframe. For example, 150|200_3.csv
- biomarker: a str, a certain biomarker name
- hashmap: a dict, returned result of obtain_hashmap()

Outputs:
- theta_mean, theta_std, phi_mean, phi_std, a tuple of floats

"""
non_diseased_participants = data[

data.diseased == False]['participant'].unique()
disease_stages = data.S_n.unique()
# DataFrame for this biomarker
biomarker_df = data[

data['biomarker'] == biomarker].reset_index(
drop=True).sort_values(

by = 'participant', ascending = True)
# Extract measurements
measurements = np.array(biomarker_df['measurement'])

this_biomarker_order = biomarker_df.S_n[0]

affected_cluster = []
non_affected_cluster = []

for p in data.participant.unique():
if p in non_diseased_participants:

non_affected_cluster.append(measurements[p])
else:

normalized_ll_dict = participants_hashmap[p]
affected_prob = sum(

normalized_ll_dict[
kj] for kj in disease_stages if kj >= this_biomarker_order)

non_affected_prob = sum(
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normalized_ll_dict[
kj] for kj in disease_stages if kj < this_biomarker_order)

if affected_prob > non_affected_prob:
affected_cluster.append(measurements[p])

elif affected_prob < non_affected_prob:
non_affected_cluster.append(measurements[p])

else:
# Assign to either cluster randomly if probabilities are equal
if np.random.random() > 0.5:

affected_cluster.append(measurements[p])
else:

non_affected_cluster.append(measurements[p])
# Compute means and standard deviations
theta_mean = np.mean(affected_cluster) if affected_cluster else np.nan
theta_std = np.std(affected_cluster) if affected_cluster else np.nan
phi_mean = np.mean(

non_affected_cluster) if non_affected_cluster else np.nan
phi_std = np.std(non_affected_cluster) if non_affected_cluster else np.nan
return theta_mean, theta_std, phi_mean, phi_std

def cal_soft_kmeans_for_biomarkers(
data,
participants_hashmap,
prior_theta_phi_estimates,

):
soft_kmeans_estimates = {}
biomarkers = data.biomarker.unique()
for biomarker in biomarkers:

dic = {'biomarker': biomarker}
prior = prior_theta_phi_estimates[biomarker]
theta_mean, theta_std, phi_mean, phi_std = calc_soft_kmeans_for_biomarker(

data, biomarker, participants_hashmap
)
if theta_std == 0 or math.isnan(theta_std):

theta_mean = prior['theta_mean']
theta_std = prior['theta_std']

if phi_std == 0 or math.isnan(phi_std):
phi_mean = prior['phi_mean']
phi_std = prior['phi_std']

dic['theta_mean'] = theta_mean
dic['theta_std'] = theta_std
dic['phi_mean'] = phi_mean
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dic['phi_std'] = phi_std
soft_kmeans_estimates[biomarker] = dic

return soft_kmeans_estimates

participants_hashmap = obtain_participants_hashmap(
data = df,
prior_theta_phi_estimates = hard_kmeans_estimates,

)

soft_kmeans_estimates = cal_soft_kmeans_for_biomarkers(
data = df,
participants_hashmap = participants_hashmap,
prior_theta_phi_estimates = hard_kmeans_estimates,

)

soft_kmeans_estimates_df = pd.DataFrame.from_dict(
soft_kmeans_estimates, orient='index')

soft_kmeans_estimates_df.reset_index(drop=True, inplace=True)
soft_kmeans_estimates_df

biomarker theta_mean theta_std phi_mean phi_std
0 HIP-FCI -5.378366 7.232544 5.092800 1.514369
1 PCC-FCI 5.710289 2.864833 12.098428 3.688180
2 AB 153.648672 18.041801 253.189546 51.038112
3 P-Tau -42.235505 34.734178 -24.626343 14.860556
4 MMSE 23.122406 2.445751 28.049683 0.718480
5 ADAS -18.374956 5.810630 -5.889272 1.283121
6 HIP-GMI 0.442551 0.261505 0.373983 0.234485
7 AVLT-Sum 23.819301 6.942910 41.371798 14.381565
8 FUS-GMI 0.496420 0.052929 0.595958 0.060867
9 FUS-FCI -6.326653 1.695438 -10.205164 3.733813

make_chart(
biomarkers[0:5],
soft_kmeans_estimates_df,
truth_df,
title = "Comparing Theta and Phi Distributions Using Soft K-Means"

)
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Figure 4.3: Comparing Theta and Phi Distributions Using Soft K-Mean
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4.4 Conclusion

We compare the above three methods. Hard k-means has the least number of prerequisites:
it only needs to know whether participants are healthy or not and biomarker measurements.
However, the drawback is that it might not be very accurate. Conjugate priors are extremely
accurate; however, it requires knowledge of almost everything: besides what is required by
hard k-means, it also requires 𝑆 and 𝑘𝑗. Soft k-kmeans does not require the knowledge of 𝑘𝑗
and is an improvement over hard k-means.

We also noticed that both conjugate priors and soft k-means need to use the result from hard
k-means as a fallback.
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5 Estimate Participant Stages

In this chapter, we will do some exercise to have a deeper understanding of the math equations
in Section 2.3.

5.1 Challenge

Suppos we know 𝑆, 𝜃, 𝜙. How could we estimate participant stages?

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import json
from collections import Counter

This is the data we have. And we want to know fill the missing column of k_j.

output_dir = 'data'
df = pd.read_csv(f"{output_dir}/100|200_3.csv")
real_stages_dic = dict(zip(df.participant, df.k_j))
df.drop(['k_j', 'affected_or_not'], axis = 1, inplace=True)
df.head()

participant biomarker measurement S_n diseased
0 0 HIP-FCI -8.908479 1 True
1 1 HIP-FCI -1.095464 1 False
2 2 HIP-FCI 0.470754 1 True
3 3 HIP-FCI 2.633455 1 True
4 4 HIP-FCI 4.070208 1 False

52



5.2 Solution

One possible solution looks like this:

• For each diseased participant, we iterate through all possible disease stages and calculate
the likelihood using Equation 2.1.

• We normalize all the likelihoods, construct an array, and randomly sample one possible
stage according to that array.

• Run multiple times, for each diseased participant, the mode of the sampled stages will
be their stage.

def compute_single_measurement_likelihood(
theta_phi,
biomarker,
affected,
measurement):

'''Computes the likelihood of the measurement value of a single biomarker

We know the normal distribution defined by either theta or phi
and we know the measurement. This will give us the probability
of this given measurement value.

input:
- theta_phi: the dictionary containing theta and phi values for each biomarker
- biomarker: an integer between 0 and 9
- affected: boolean
- measurement: the observed value for a biomarker in a specific participant

output: a scalar
'''
biomarker_dict = theta_phi[biomarker]
mu = biomarker_dict['theta_mean'] if affected else biomarker_dict['phi_mean']
std = biomarker_dict['theta_std'] if affected else biomarker_dict['phi_std']
var = std**2
if var <= int(0) or np.isnan(measurement) or np.isnan(mu):

print(f"Invalid values: measurement: {measurement}, mu: {mu}, var: {var}")
likelihood = np.exp(-(measurement - mu)**2 /

(2 * var)) / np.sqrt(2 * np.pi * var)
else:

likelihood = np.exp(-(measurement - mu)**2 /
(2 * var)) / np.sqrt(2 * np.pi * var)
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return likelihood

def fill_up_kj_and_affected(pdata, k_j):
'''Fill up a single participant's data using k_j; basically add two columns:
k_j and affected
Note that this function assumes that pdata already has the S_n column

Input:
- pdata: a dataframe of ten biomarker values for a specific participant
- k_j: a scalar
'''
data = pdata.copy()
data['k_j'] = k_j
data['affected'] = data.apply(lambda row: row.k_j >= row.S_n, axis=1)
return data

def compute_likelihood(pdata, k_j, theta_phi):
'''
This function computes the likelihood of seeing this sequence of biomarker values
for a specific participant, assuming that this participant is at stage k_j
'''
data = fill_up_kj_and_affected(pdata, k_j)
likelihood = 1
for i, row in data.iterrows():

biomarker = row['biomarker']
measurement = row['measurement']
affected = row['affected']
likelihood *= compute_single_measurement_likelihood(

theta_phi, biomarker, affected, measurement)
return likelihood

We first look at the known 𝜃, 𝜙:

with open('files/real_theta_phi.json', 'r') as f:
truth = json.load(f)

truth_df = pd.DataFrame.from_dict(truth, orient='index')
truth_df.reset_index(names = 'biomarker', inplace=True)
truth_df
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biomarker theta_mean theta_std phi_mean phi_std
0 MMSE 22.0 2.666667 28.0 0.666667
1 ADAS -20.0 4.000000 -6.0 1.333333
2 AB 150.0 16.666667 250.0 50.000000
3 P-Tau -50.0 33.333333 -25.0 16.666667
4 HIP-FCI -5.0 6.666667 5.0 1.666667
5 HIP-GMI 0.3 0.333333 0.4 0.233333
6 AVLT-Sum 20.0 6.666667 40.0 15.000000
7 PCC-FCI 5.0 3.333333 12.0 4.000000
8 FUS-GMI 0.5 0.066667 0.6 0.066667
9 FUS-FCI -20.0 6.000000 -10.0 3.333333

5.3 Implementation

We then implement the algorithm mentioned above:

theta_phi_estimates = truth.copy()
disease_stages = df.S_n.unique()
diseased_participants = df[df.diseased==True]['participant'].unique()

def update_participant_stages_dic(
data,
p,
disease_stages,
theta_phi_estimates,
# participant stage dic:
psdic,
sample_iterations = 20

):
"""
Inputs:

- data: pd.dataframe, e.g., 100|200_3.csv
- p: int
- disease_stages: a list of integers
- theta_phi_estimates: a hashmap of dictionaries
- psdic: a dictionary
- sample_iteration: int. How many times we sample

Output:
no outputs. Simply update psdic

"""

55



pdata = data[data.participant == p]
stage_likelihood_dict = {}
for k_j in disease_stages:

kj_likelihood = compute_likelihood(
pdata, k_j, theta_phi_estimates)

# update each stage likelihood for this participant
stage_likelihood_dict[k_j] = kj_likelihood

# Add a small epsilon to avoid division by zero
likelihood_sum = sum(stage_likelihood_dict.values())
epsilon = 1e-10
if likelihood_sum == 0:

# print("Invalid likelihood_sum: zero encountered.")
likelihood_sum = epsilon # Handle the case accordingly

normalized_stage_likelihood = [
l/likelihood_sum for l in stage_likelihood_dict.values()]

sampled_stages = np.random.choice(
disease_stages,
size = sample_iterations,
p=normalized_stage_likelihood,
replace=True

)
mode_result = Counter(sampled_stages).most_common(1)[0][0]
psdic[p] = mode_result

participants = df.participant.unique()
psdic = {}
for p in participants:

if p not in diseased_participants:
psdic[p] = 0

else:
update_participant_stages_dic(

df,
p,
disease_stages,
theta_phi_estimates,
# participant stage dic:
psdic,
sample_iterations = 10

)
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5.4 Result

Then we compare our results with the actual participants’ stages:

diff = np.array(list(psdic.values())) - np.array(list(real_stages_dic.values()))

def scatter_plot_of_stage_differences(stage_differences):
'''Scatter Plot of the Difference at each index
Input:
- stage_differences: estimated_stages - actual stages. Result should be a 1-dim np array
'''
plt.figure(figsize=(10, 6))
plt.scatter(range(len(diff)), stage_differences, alpha=0.6)
plt.axhline(y=0, color='red', linestyle='--')
plt.title("Scatter Plot of Stage Difference for Each Participant")
plt.xlabel("Participant")
plt.ylabel("Difference (Estimated Stage - True Stage)")
plt.grid(True)
plt.show()

scatter_plot_of_stage_differences(diff)
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5.5 Discussion

From the above result, we can see how challenging it is to accurately estimate participant
stages, even if we know exactly the 𝜃 and 𝜙.

Tip

What if we know only 𝑆, but not 𝜃 or 𝜙?
The first step for us is to estimate 𝜃, 𝜙 and then follow the above procedures. To do that,
refer back to Chapter 4.
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6 Estimate S

Now we come to the core part of our project: how can we estimate 𝑆, without knowing
𝜃, 𝜙, 𝑘𝑗?

Basically, this is the data we have:

import pandas as pd
output_dir = 'data'
df = pd.read_csv(f"{output_dir}/150|200_3.csv").drop(

['k_j', 'S_n', 'affected_or_not'], axis = 1)
df.head()

participant biomarker measurement diseased
0 0 HIP-FCI 3.135981 False
1 1 HIP-FCI 12.593704 True
2 2 HIP-FCI 6.220776 False
3 3 HIP-FCI 3.545100 False
4 4 HIP-FCI 3.966541 False

The main idea is this:

• We need to know 𝜃, 𝜙 first before we can estimate likelihoods. To estimate 𝜃, 𝜙, there
are three approaches covered in Chapter 4.

• We try many different 𝑆 and calculate its associated likelihood. We either accept or
reject this 𝑆 according to Metropolis–Hastings algorithm.

In the following, We will cover three different approaches to estimate 𝑆:

• Hard K-Means
• Soft K-Means
• Conjugate Priors
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7 Estimate 𝑆 with Hard KMeans

The basic idea of using hard K Means to estimate 𝑆 is:

• We first estimate distribution parameters using hard K Means, the exact procedure we
covered in Section 4.1.

• We use Metropolis–Hastings algorithm to accept or reject a proposed 𝑆.

Figure 7.1: Hard K-Means Algorithm
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7.1 Implementation

import numpy as np
import utils
import json
import pandas as pd
import utils
from scipy.stats import kendalltau
import sys
import os

def calculate_all_participant_ln_likelihood(
iteration,
data_we_have,
current_order_dict,
n_participants,
non_diseased_participant_ids,
theta_phi_estimates,
diseased_stages,

):
data = data_we_have.copy()
data['S_n'] = data.apply(

lambda row: current_order_dict[row['biomarker']], axis=1)
all_participant_ln_likelihood = 0

for p in range(n_participants):
pdata = data[data.participant == p].reset_index(drop=True)
if p in non_diseased_participant_ids:

this_participant_likelihood = utils.compute_likelihood(
pdata, k_j=0, theta_phi=theta_phi_estimates)

this_participant_ln_likelihood = np.log(
this_participant_likelihood + 1e-10)

else:
# normalized_stage_likelihood_dict = None
# initiaze stage_likelihood
stage_likelihood_dict = {}
for k_j in diseased_stages:

kj_likelihood = utils.compute_likelihood(
pdata, k_j, theta_phi_estimates)

# update each stage likelihood for this participant
stage_likelihood_dict[k_j] = kj_likelihood
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# Add a small epsilon to avoid division by zero
likelihood_sum = sum(stage_likelihood_dict.values())

# calculate weighted average
this_participant_likelihood = np.mean(likelihood_sum)
this_participant_ln_likelihood = np.log(

this_participant_likelihood + 1e-10)
all_participant_ln_likelihood += this_participant_ln_likelihood

return all_participant_ln_likelihood

def metropolis_hastings_hard_kmeans(
data_we_have,
iterations,
n_shuffle,

):
'''Implement the metropolis-hastings algorithm using simple clustering
Inputs:

- data: data_we_have
- iterations: number of iterations
- log_folder_name: the folder where log files locate

Outputs:
- best_order: a numpy array
- best_likelihood: a scalar

'''
n_participants = len(data_we_have.participant.unique())
biomarkers = data_we_have.biomarker.unique()
n_biomarkers = len(biomarkers)
n_stages = n_biomarkers + 1
non_diseased_participant_ids = data_we_have.loc[

data_we_have.diseased == False].participant.unique()
diseased_stages = np.arange(start=1, stop=n_stages, step=1)
# obtain the iniial theta and phi estimates
theta_phi_estimates = utils.get_theta_phi_estimates(

data_we_have)

# initialize empty lists
acceptance_count = 0
all_current_accepted_order_dicts = []

current_accepted_order = np.random.permutation(np.arange(1, n_stages))
current_accepted_order_dict = dict(zip(biomarkers, current_accepted_order))
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current_accepted_likelihood = -np.inf

for _ in range(iterations):
# in each iteration, we have updated current_order_dict and theta_phi_estimates

new_order = current_accepted_order.copy()
utils.shuffle_order(new_order, n_shuffle)
current_order_dict = dict(zip(biomarkers, new_order))
all_participant_ln_likelihood = calculate_all_participant_ln_likelihood(

_,
data_we_have,
current_order_dict,
n_participants,
non_diseased_participant_ids,
theta_phi_estimates,
diseased_stages,

)

# Log-Sum-Exp Trick
max_likelihood = max(all_participant_ln_likelihood,

current_accepted_likelihood)
prob_of_accepting_new_order = np.exp(

(all_participant_ln_likelihood - max_likelihood) -
(current_accepted_likelihood - max_likelihood)

)

# prob_of_accepting_new_order = np.exp(
# all_participant_ln_likelihood - current_accepted_likelihood)

# np.exp(a)/np.exp(b) = np.exp(a - b)
# if a > b, then np.exp(a - b) > 1

# it will definitly update at the first iteration
if np.random.rand() < prob_of_accepting_new_order:

acceptance_count += 1
current_accepted_order = new_order
current_accepted_likelihood = all_participant_ln_likelihood
current_accepted_order_dict = current_order_dict

acceptance_ratio = acceptance_count*100/(_+1)
all_current_accepted_order_dicts.append(current_accepted_order_dict)
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if (_+1) % 10 == 0:
formatted_string = (

f"iteration {_ + 1} done, "
f"current accepted likelihood: {current_accepted_likelihood}, "
f"current acceptance ratio is {acceptance_ratio:.2f} %, "
f"current accepted order is {current_accepted_order_dict.values()}, "

)
print(formatted_string)

# print("done!")
return all_current_accepted_order_dicts

n_shuffle = 2
iterations = 10
burn_in = 2
thining = 2

base_dir = os.getcwd()
print(f"Current working directory: {base_dir}")
data_dir = os.path.join(base_dir, "data")

cop_kmeans_dir = os.path.join(base_dir, 'hard_kmeans')
temp_results_dir = os.path.join(cop_kmeans_dir, "temp_json_results")
img_dir = os.path.join(cop_kmeans_dir, 'img')
results_file = os.path.join(cop_kmeans_dir, "results.json")

os.makedirs(cop_kmeans_dir, exist_ok=True)
os.makedirs(temp_results_dir, exist_ok=True)
os.makedirs(img_dir, exist_ok=True)

print(f"Data directory: {data_dir}")
print(f"Temp results directory: {temp_results_dir}")
print(f"Image directory: {img_dir}")

if __name__ == "__main__":

# Read parameters from command line arguments
j = 200
r = 0.75
m = 3
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print(f"Processing with j={j}, r={r}, m={m}")

combstr = f"{int(j*r)}|{j}"
heatmap_folder = img_dir

img_filename = f"{int(j*r)}-{j}_{m}"
filename = f"{combstr}_{m}"
data_file = f"{data_dir}/{filename}.csv"
data_we_have = pd.read_csv(data_file)
n_biomarkers = len(data_we_have.biomarker.unique())

if not os.path.exists(data_file):
print(f"Data file not found: {data_file}")
sys.exit(1) # Exit early if the file doesn't exist

else:
print(f"Data file found: {data_file}")

# Define the temporary result file
temp_result_file = os.path.join(temp_results_dir, f"temp_results_{j}_{r}_{m}.json")

dic = {}

if combstr not in dic:
dic[combstr] = []

accepted_order_dicts = metropolis_hastings_hard_kmeans(
data_we_have,
iterations,
n_shuffle,

)

utils.save_heatmap(
accepted_order_dicts,
burn_in,
thining,
folder_name=heatmap_folder,
file_name=f"{img_filename}",
title=f'heatmap of {filename}')

most_likely_order_dic = utils.obtain_most_likely_order_dic(
accepted_order_dicts, burn_in, thining)

most_likely_order = list(most_likely_order_dic.values())
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tau, p_value = kendalltau(most_likely_order, range(1, n_biomarkers + 1))

dic[combstr].append(tau)

# Write the results to a unique temporary file inside the temp folder
with open(temp_result_file, "w") as file:

json.dump(dic, file, indent=4)
print(f"{filename} is done! Results written to {temp_result_file}")

Current working directory: /Users/hongtaoh/Desktop/github/ebmBook
Data directory: /Users/hongtaoh/Desktop/github/ebmBook/data
Temp results directory: /Users/hongtaoh/Desktop/github/ebmBook/hard_kmeans/temp_json_results
Image directory: /Users/hongtaoh/Desktop/github/ebmBook/hard_kmeans/img
Processing with j=200, r=0.75, m=3
Data file found: /Users/hongtaoh/Desktop/github/ebmBook/data/150|200_3.csv
iteration 10 done, current accepted likelihood: -4491.553963056519, current acceptance ratio is 70.00 %, current accepted order is dict_values([1, 5, 2, 3, 9, 8, 10, 6, 4, 7]),
150|200_3 is done! Results written to /Users/hongtaoh/Desktop/github/ebmBook/hard_kmeans/temp_json_results/temp_results_200_0.75_3.json

7.2 Result

We plot the resulting 𝑆 probalistically using a heatmap. We also quantify the difference be-
tween our result with the real 𝑆 using Kendall’s Tau. It ranges from −1 (completely different)
to 1 (exactly the same). 0 indicate complete randomness.

dic

{'150|200': [0.3333333333333333]}
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Figure 7.2: Result of Hard K-Means
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8 Estimate 𝑆 with Soft K-Means

The basic idea of using Soft K-Means to estimate 𝑆 is:

• We first estimate distribution parameters using hard K-Means, the exact procedure we
covered in Section 4.1.

• In each iteration, we use Soft Kmeans algorithm to update 𝜃, 𝜙 (refer to Section 4.3) and
use Metropolis–Hastings algorithm to accept or reject a proposed 𝑆.

Figure 8.1: Soft K-Means Algorithm
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8.1 Implementation

import numpy as np
import utils
import json
import pandas as pd
import utils
from scipy.stats import kendalltau
import sys
import os
import math

def calculate_soft_kmeans_for_biomarker(
data,
biomarker,
order_dict,
n_participants,
non_diseased_participants,
hashmap_of_normalized_stage_likelihood_dicts,
diseased_stages,
seed=None

):
"""
Calculate mean and std for both the affected and non-affected clusters for a single biomarker.

Parameters:
data (pd.DataFrame): The data containing measurements.
biomarker (str): The biomarker to process.
order_dict (dict): Dictionary mapping biomarkers to their order.
n_participants (int): Number of participants in the study.
non_diseased_participants (list): List of non-diseased participants.
hashmap_of_normalized_stage_likelihood_dicts (dict): Hash map of

dictionaries containing stage likelihoods for each participant.
diseased_stages (list): List of diseased stages.
seed (int, optional): Random seed for reproducibility.

Returns:
tuple: Means and standard deviations for affected and non-affected clusters.

"""
if seed is not None:

# Set the seed for numpy's random number generator
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rng = np.random.default_rng(seed)
else:

rng = np.random

# DataFrame for this biomarker
biomarker_df = data[

data['biomarker'] == biomarker].reset_index(
drop=True).sort_values(

by = 'participant', ascending = True)
# Extract measurements
measurements = np.array(biomarker_df['measurement'])

this_biomarker_order = order_dict[biomarker]

affected_cluster = []
non_affected_cluster = []

for p in range(n_participants):
if p in non_diseased_participants:

non_affected_cluster.append(measurements[p])
else:

if this_biomarker_order == 1:
affected_cluster.append(measurements[p])

else:
normalized_stage_likelihood_dict = hashmap_of_normalized_stage_likelihood_dicts[

p]
# Calculate probabilities for affected and non-affected states
affected_prob = sum(

normalized_stage_likelihood_dict[s] for s in diseased_stages if s >= this_biomarker_order
)
non_affected_prob = sum(

normalized_stage_likelihood_dict[s] for s in diseased_stages if s < this_biomarker_order
)
if affected_prob > non_affected_prob:

affected_cluster.append(measurements[p])
elif affected_prob < non_affected_prob:

non_affected_cluster.append(measurements[p])
else:

# Assign to either cluster randomly if probabilities are equal
if rng.random() > 0.5:

affected_cluster.append(measurements[p])
else:
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non_affected_cluster.append(measurements[p])

# Compute means and standard deviations
theta_mean = np.mean(affected_cluster) if affected_cluster else np.nan
theta_std = np.std(affected_cluster) if affected_cluster else np.nan
phi_mean = np.mean(

non_affected_cluster) if non_affected_cluster else np.nan
phi_std = np.std(non_affected_cluster) if non_affected_cluster else np.nan
return theta_mean, theta_std, phi_mean, phi_std

def soft_kmeans_theta_phi_estimates(
iteration,
prior_theta_phi_estimates,
data_we_have,
biomarkers,
order_dict,
n_participants,
non_diseased_participants,
hashmap_of_normalized_stage_likelihood_dicts,
diseased_stages,
seed=None):

"""
Get the DataFrame of theta and phi using the soft K-means algorithm for all biomarkers.

Parameters:
data_we_have (pd.DataFrame): DataFrame containing the data.
biomarkers (list): List of biomarkers in string.
order_dict (dict): Dictionary mapping biomarkers to their order.
n_participants (int): Number of participants in the study.
non_diseased_participants (list): List of non-diseased participants.
hashmap_of_normalized_stage_likelihood_dicts (dict): Hash map of dictionaries containing stage likelihoods for each participant.
diseased_stages (list): List of diseased stages.
seed (int, optional): Random seed for reproducibility.

Returns:
a dictionary containing the means and standard deviations for theta and phi for each biomarker.

"""
# List of dicts to store the estimates
# In each dic, key is biomarker, and values are theta and phi params
hashmap_of_means_stds_estimate_dicts = {}
for biomarker in biomarkers:

dic = {'biomarker': biomarker}
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prior_theta_phi_estimates_biomarker = prior_theta_phi_estimates[biomarker]
theta_mean, theta_std, phi_mean, phi_std = calculate_soft_kmeans_for_biomarker(

data_we_have,
biomarker,
order_dict,
n_participants,
non_diseased_participants,
hashmap_of_normalized_stage_likelihood_dicts,
diseased_stages,
seed

)
if theta_std == 0 or math.isnan(theta_std):

theta_mean = prior_theta_phi_estimates_biomarker['theta_mean']
theta_std = prior_theta_phi_estimates_biomarker['theta_std']

if phi_std == 0 or math.isnan(phi_std):
phi_mean = prior_theta_phi_estimates_biomarker['phi_mean']
phi_std = prior_theta_phi_estimates_biomarker['phi_std']

dic['theta_mean'] = theta_mean
dic['theta_std'] = theta_std
dic['phi_mean'] = phi_mean
dic['phi_std'] = phi_std
hashmap_of_means_stds_estimate_dicts[biomarker] = dic

return hashmap_of_means_stds_estimate_dicts

def calculate_all_participant_ln_likelihood_and_update_hashmap(
iteration,
data_we_have,
current_order_dict,
n_participants,
non_diseased_participant_ids,
theta_phi_estimates,
diseased_stages,

):
data = data_we_have.copy()
data['S_n'] = data.apply(

lambda row: current_order_dict[row['biomarker']], axis=1)
all_participant_ln_likelihood = 0
# key is participant id
# value is normalized_stage_likelihood_dict
hashmap_of_normalized_stage_likelihood_dicts = {}
for p in range(n_participants):

pdata = data[data.participant == p].reset_index(drop=True)
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if p in non_diseased_participant_ids:
this_participant_likelihood = utils.compute_likelihood(

pdata, k_j=0, theta_phi=theta_phi_estimates)
this_participant_ln_likelihood = np.log(

this_participant_likelihood + 1e-10)
else:

# normalized_stage_likelihood_dict = None
# initiaze stage_likelihood
stage_likelihood_dict = {}
for k_j in diseased_stages:

kj_likelihood = utils.compute_likelihood(
pdata, k_j, theta_phi_estimates)

# update each stage likelihood for this participant
stage_likelihood_dict[k_j] = kj_likelihood

# Add a small epsilon to avoid division by zero
likelihood_sum = sum(stage_likelihood_dict.values())
epsilon = 1e-10
if likelihood_sum == 0:

# print("Invalid likelihood_sum: zero encountered.")
likelihood_sum = epsilon # Handle the case accordingly

normalized_stage_likelihood = [
l/likelihood_sum for l in stage_likelihood_dict.values()]

normalized_stage_likelihood_dict = dict(
zip(diseased_stages, normalized_stage_likelihood))

hashmap_of_normalized_stage_likelihood_dicts[p] = normalized_stage_likelihood_dict

# calculate weighted average
this_participant_likelihood = np.mean(likelihood_sum)
this_participant_ln_likelihood = np.log(

this_participant_likelihood)
all_participant_ln_likelihood += this_participant_ln_likelihood

return all_participant_ln_likelihood, hashmap_of_normalized_stage_likelihood_dicts

def metropolis_hastings_soft_kmeans(
data_we_have,
iterations,
n_shuffle,

):
'''Implement the metropolis-hastings algorithm using soft kmeans
Inputs:

- data: data_we_have
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- iterations: number of iterations
- log_folder_name: the folder where log files locate

Outputs:
- best_order: a numpy array
- best_likelihood: a scalar

'''
n_participants = len(data_we_have.participant.unique())
biomarkers = data_we_have.biomarker.unique()
n_biomarkers = len(biomarkers)
n_stages = n_biomarkers + 1
non_diseased_participant_ids = data_we_have.loc[

data_we_have.diseased == False].participant.unique()
diseased_stages = np.arange(start=1, stop=n_stages, step=1)
# obtain the iniial theta and phi estimates
prior_theta_phi_estimates = utils.get_theta_phi_estimates(

data_we_have)
theta_phi_estimates = prior_theta_phi_estimates.copy()

# initialize empty lists
acceptance_count = 0
all_current_accepted_order_dicts = []

current_accepted_order = np.random.permutation(np.arange(1, n_stages))
current_accepted_order_dict = dict(zip(biomarkers, current_accepted_order))
current_accepted_likelihood = -np.inf

for _ in range(iterations):
# in each iteration, we have updated current_order_dict and theta_phi_estimates

new_order = current_accepted_order.copy()
utils.shuffle_order(new_order, n_shuffle)
current_order_dict = dict(zip(biomarkers, new_order))
all_participant_ln_likelihood, \

hashmap_of_normalized_stage_likelihood_dicts = calculate_all_participant_ln_likelihood_and_update_hashmap(
_,
data_we_have,
current_order_dict,
n_participants,
non_diseased_participant_ids,
theta_phi_estimates,
diseased_stages,
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)

# Now, update theta_phi_estimates using soft kmeans
# based on the updated hashmap of normalized stage likelihood dicts
theta_phi_estimates = soft_kmeans_theta_phi_estimates(

_,
prior_theta_phi_estimates,
data_we_have,
biomarkers,
current_order_dict,
n_participants,
non_diseased_participant_ids,
hashmap_of_normalized_stage_likelihood_dicts,
diseased_stages,
seed=None,

)

# Log-Sum-Exp Trick
max_likelihood = max(all_participant_ln_likelihood,

current_accepted_likelihood)
prob_of_accepting_new_order = np.exp(

(all_participant_ln_likelihood - max_likelihood) -
(current_accepted_likelihood - max_likelihood)

)

# prob_of_accepting_new_order = np.exp(
# all_participant_ln_likelihood - current_accepted_likelihood)

# np.exp(a)/np.exp(b) = np.exp(a - b)
# if a > b, then np.exp(a - b) > 1

# it will definitly update at the first iteration
if np.random.rand() < prob_of_accepting_new_order:

acceptance_count += 1
current_accepted_order = new_order
current_accepted_likelihood = all_participant_ln_likelihood
current_accepted_order_dict = current_order_dict

acceptance_ratio = acceptance_count*100/(_+1)
all_current_accepted_order_dicts.append(current_accepted_order_dict)

if (_+1) % 10 == 0:
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formatted_string = (
f"iteration {_ + 1} done, "
f"current accepted likelihood: {current_accepted_likelihood}, "
f"current acceptance ratio is {acceptance_ratio:.2f} %, "
f"current accepted order is {current_accepted_order_dict.values()}, "

)
print(formatted_string)

# print("done!")
return all_current_accepted_order_dicts

n_shuffle = 2
iterations = 10
burn_in = 2
thining = 2

base_dir = os.getcwd()
print(f"Current working directory: {base_dir}")
data_dir = os.path.join(base_dir, "data")

soft_kmeans_dir = os.path.join(base_dir, 'soft_kmeans')
temp_results_dir = os.path.join(soft_kmeans_dir, "temp_json_results")
img_dir = os.path.join(soft_kmeans_dir, 'img')
results_file = os.path.join(soft_kmeans_dir, "results.json")

os.makedirs(soft_kmeans_dir, exist_ok=True)
os.makedirs(temp_results_dir, exist_ok=True)
os.makedirs(img_dir, exist_ok=True)

print(f"Data directory: {data_dir}")
print(f"Temp results directory: {temp_results_dir}")
print(f"Image directory: {img_dir}")

if __name__ == "__main__":

# Read parameters from command line arguments
j = 200
r = 0.75
m = 3

print(f"Processing with j={j}, r={r}, m={m}")
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combstr = f"{int(j*r)}|{j}"
heatmap_folder = img_dir

img_filename = f"{int(j*r)}-{j}_{m}"
filename = f"{combstr}_{m}"
data_file = f"{data_dir}/{filename}.csv"
data_we_have = pd.read_csv(data_file)
n_biomarkers = len(data_we_have.biomarker.unique())

if not os.path.exists(data_file):
print(f"Data file not found: {data_file}")
sys.exit(1) # Exit early if the file doesn't exist

else:
print(f"Data file found: {data_file}")

# Define the temporary result file
temp_result_file = os.path.join(temp_results_dir, f"temp_results_{j}_{r}_{m}.json")

dic = {}

if combstr not in dic:
dic[combstr] = []

accepted_order_dicts = metropolis_hastings_soft_kmeans(
data_we_have,
iterations,
n_shuffle,

)

utils.save_heatmap(
accepted_order_dicts,
burn_in,
thining,
folder_name=heatmap_folder,
file_name=f"{img_filename}",
title=f'heatmap of {filename}')

most_likely_order_dic = utils.obtain_most_likely_order_dic(
accepted_order_dicts, burn_in, thining)

most_likely_order = list(most_likely_order_dic.values())
tau, p_value = kendalltau(most_likely_order, range(1, n_biomarkers + 1))
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dic[combstr].append(tau)

# Write the results to a unique temporary file inside the temp folder
with open(temp_result_file, "w") as file:

json.dump(dic, file, indent=4)
print(f"{filename} is done! Results written to {temp_result_file}")

Current working directory: /Users/hongtaoh/Desktop/github/ebmBook
Data directory: /Users/hongtaoh/Desktop/github/ebmBook/data
Temp results directory: /Users/hongtaoh/Desktop/github/ebmBook/soft_kmeans/temp_json_results
Image directory: /Users/hongtaoh/Desktop/github/ebmBook/soft_kmeans/img
Processing with j=200, r=0.75, m=3
Data file found: /Users/hongtaoh/Desktop/github/ebmBook/data/150|200_3.csv

/var/folders/wx/xz5y_06d15q5pgl_mhv76c8r0000gn/T/ipykernel_12345/1007084789.py:261: RuntimeWarning: overflow encountered in exp
prob_of_accepting_new_order = np.exp(

iteration 10 done, current accepted likelihood: -4558.471198243365, current acceptance ratio is 100.00 %, current accepted order is dict_values([5, 9, 3, 4, 2, 1, 6, 8, 7, 10]),
150|200_3 is done! Results written to /Users/hongtaoh/Desktop/github/ebmBook/soft_kmeans/temp_json_results/temp_results_200_0.75_3.json

8.2 Result

We plot the resulting 𝑆 probalistically using a heatmap.

dic

{'150|200': [-0.15555555555555553]}
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Figure 8.2: Result of Soft K-Means
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9 Estimate 𝑆 with Conjugate Priors

The basic idea of using conjugate Priors to estimate 𝑆 is:

• We first estimate distribution parameters using hard K-Means, the exact procedure we
covered in Section 4.1.

• We first randomly assign each diseased participant a stage. Then, in each iteration, we
use the conjugate priors algorithm to update 𝜃, 𝜙 (refer to Section 4.2) and also 𝑘𝑗. We
use Metropolis–Hastings algorithm to accept or reject a proposed 𝑆.

9.1 Implementation

import numpy as np
import utils
import json
import pandas as pd
import utils
from scipy.stats import kendalltau
import sys
import os
import math
import random

def estimate_params_exact(m0, n0, s0_sq, v0, data):
'''This is to estimate means and vars based on conjugate priors
Inputs:

- data: a vector of measurements
- m0: prior estimate of $\mu$.
- n0: how strongly is the prior belief in $m_0$ is held.
- s0_sq: prior estimate of $\sigma^2$.
- v0: prior degress of freedome, influencing the certainty of $s_0^2$.

Outputs:
- mu estiate, std estimate
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Figure 9.1: Conjugate Priors Algorithm
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'''
# Data summary
sample_mean = np.mean(data)
sample_size = len(data)
sample_var = np.var(data, ddof=1) # ddof=1 for unbiased estimator

# Update hyperparameters for the Normal-Inverse Gamma posterior
updated_m0 = (n0 * m0 + sample_size * sample_mean) / (n0 + sample_size)
updated_n0 = n0 + sample_size
updated_v0 = v0 + sample_size
updated_s0_sq = (1 / updated_v0) * ((sample_size - 1) * sample_var + v0 * s0_sq +

(n0 * sample_size / updated_n0) * (sample_mean - m0)**2)
updated_alpha = updated_v0/2
updated_beta = updated_v0*updated_s0_sq/2

# Posterior estimates
mu_posterior_mean = updated_m0
sigma_squared_posterior_mean = updated_beta/updated_alpha

mu_estimation = mu_posterior_mean
std_estimation = np.sqrt(sigma_squared_posterior_mean)

return mu_estimation, std_estimation

def get_theta_phi_conjugate_priors(biomarkers, data_we_have, theta_phi_kmeans):
'''To get estimated parameters, returns a hashmap
Input:
- biomarkers: biomarkers
- data_we_have: participants data filled with initial or updated participant_stages
- theta_phi_kmeans: a hashmap of dicts, which are the prior theta and phi values

obtained from the initial constrained kmeans algorithm

Output:
- a hashmap of dictionaries. Key is biomarker name and value is a dictionary.
Each dictionary contains the theta and phi mean/std values for a specific biomarker.
'''
# empty list of dictionaries to store the estimates
hashmap_of_means_stds_estimate_dicts = {}

for biomarker in biomarkers:
# Initialize dictionary outside the inner loop
dic = {'biomarker': biomarker}

82



for affected in [True, False]:
data_full = data_we_have[(data_we_have.biomarker == biomarker) & (

data_we_have.affected == affected)]
if len(data_full) > 1:

measurements = data_full.measurement
s0_sq = np.var(measurements, ddof=1)
m0 = np.mean(measurements)
mu_estimate, std_estimate = estimate_params_exact(

m0=m0, n0=1, s0_sq=s0_sq, v0=1, data=measurements)
if affected:

dic['theta_mean'] = mu_estimate
dic['theta_std'] = std_estimate

else:
dic['phi_mean'] = mu_estimate
dic['phi_std'] = std_estimate

# If there is only one observation or not observation at all, resort to theta_phi_kmeans
# YES, IT IS POSSIBLE THAT DATA_FULL HERE IS NULL
# For example, if a biomarker indicates stage of (num_biomarkers), but all participants' stages
# are smaller than that stage; so that for all participants, this biomarker is not affected
else:

# print(theta_phi_kmeans)
if affected:

dic['theta_mean'] = theta_phi_kmeans[biomarker]['theta_mean']
dic['theta_std'] = theta_phi_kmeans[biomarker]['theta_std']

else:
dic['phi_mean'] = theta_phi_kmeans[biomarker]['phi_mean']
dic['phi_std'] = theta_phi_kmeans[biomarker]['phi_std']

# print(f"biomarker {biomarker} done!")
hashmap_of_means_stds_estimate_dicts[biomarker] = dic

return hashmap_of_means_stds_estimate_dicts

def compute_all_participant_ln_likelihood_and_update_participant_stages(
n_participants,
data,
non_diseased_participant_ids,
estimated_theta_phi,
disease_stages,
participant_stages,

):
all_participant_ln_likelihood = 0
for p in range(n_participants):

# this participant data
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pdata = data[data.participant == p].reset_index(drop=True)

"""If this participant is not diseased (i.e., if we know k_j is equal to 0)
We still need to compute the likelihood of this participant seeing this sequence of biomarker data
but we do not need to estimate k_j like below

We still need to compute the likelihood because we need to add it to all_participant_ln_likelihood
"""
if p in non_diseased_participant_ids:

this_participant_likelihood = utils.compute_likelihood(
pdata, k_j=0, theta_phi=estimated_theta_phi)

this_participant_ln_likelihood = np.log(
this_participant_likelihood + 1e-10)

else:
# initiaze stage_likelihood
stage_likelihood_dict = {}
for k_j in disease_stages:

# even though data above has everything, it is filled up by random stages
# we don't like it and want to know the true k_j. All the following is to update participant_stages
participant_likelihood = utils.compute_likelihood(

pdata, k_j, estimated_theta_phi)
# update each stage likelihood for this participant
stage_likelihood_dict[k_j] = participant_likelihood

likelihood_sum = sum(stage_likelihood_dict.values())
normalized_stage_likelihood = [

l/likelihood_sum for l in stage_likelihood_dict.values()]
sampled_stage = np.random.choice(

disease_stages, p=normalized_stage_likelihood)
participant_stages[p] = sampled_stage

# use weighted average likelihood because we didn't know the exact participant stage
# all above to calculate participant_stage is only for the purpous of calculate theta_phi
this_participant_likelihood = np.mean(likelihood_sum)
this_participant_ln_likelihood = np.log(

this_participant_likelihood + 1e-10)
"""
All the codes in between are calculating this_participant_ln_likelihood.
If we already know kj=0, then
it's very simple. If kj is unknown, we need to calculate the likelihood of seeing
this sequence of biomarker
data at different stages, and get the relative likelihood before
we get a sampled stage (this is for estimating theta and phi).
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Then we calculate this_participant_ln_likelihood using average likelihood.
"""
all_participant_ln_likelihood += this_participant_ln_likelihood

return all_participant_ln_likelihood

def update_data_by_the_new_participant_stages(data, participant_stages, n_participants):
'''This is to fill up data_we_have.
Basically, add two columns: k_j, affected, and modify diseased column
based on the initial or updated participant_stages
Note that we assume here we've already got S_n

Inputs:
- data_we_have
- participant_stages: np array
- participants: 0-99

'''
participant_stage_dic = dict(

zip(np.arange(0, n_participants), participant_stages))
data['k_j'] = data.apply(

lambda row: participant_stage_dic[row.participant], axis=1)
data['diseased'] = data.apply(lambda row: row.k_j > 0, axis=1)
data['affected'] = data.apply(lambda row: row.k_j >= row.S_n, axis=1)
return data

"""The version without reverting back to the max order
"""
def metropolis_hastings_with_conjugate_priors(

data_we_have,
iterations,
n_shuffle

):
n_participants = len(data_we_have.participant.unique())
biomarkers = data_we_have.biomarker.unique()
n_biomarkers = len(biomarkers)
n_stages = n_biomarkers + 1
diseased_stages = np.arange(start=1, stop=n_stages, step=1)

non_diseased_participant_ids = data_we_have.loc[
data_we_have.diseased == False].participant.unique()

# initialize empty lists
acceptance_count = 0
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all_current_accepted_order_dicts = []

# initialize an ordering and likelihood
# note that it should be a random permutation of numbers 1-10
current_accepted_order = np.random.permutation(np.arange(1, n_stages))
current_accepted_order_dict = dict(zip(biomarkers, current_accepted_order))
current_accepted_likelihood = -np.inf

participant_stages = np.zeros(n_participants)
for idx in range(n_participants):

if idx not in non_diseased_participant_ids:
# 1-len(diseased_stages), inclusive on both ends
participant_stages[idx] = random.randint(1, len(diseased_stages))

for _ in range(iterations):
new_order = current_accepted_order.copy()
utils.shuffle_order(new_order, n_shuffle)
current_order_dict = dict(zip(biomarkers, new_order))

# copy the data to avoid modifying the original
data = data_we_have.copy()
data['S_n'] = data.apply(

lambda row: current_order_dict[row['biomarker']], axis=1)
# add kj and affected for the whole dataset based on participant_stages
# also modify diseased col (because it will be useful for the new theta_phi_kmeans)
data = update_data_by_the_new_participant_stages(

data, participant_stages, n_participants)
# should be inside the for loop because once the participant_stages change,
# the diseased column changes as well.
theta_phi_kmeans = utils.get_theta_phi_estimates(

data_we_have,
)
estimated_theta_phi = get_theta_phi_conjugate_priors(

biomarkers, data, theta_phi_kmeans)

all_participant_ln_likelihood = compute_all_participant_ln_likelihood_and_update_participant_stages(
n_participants,
data,
non_diseased_participant_ids,
estimated_theta_phi,
diseased_stages,
participant_stages,
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)

# ratio = likelihood/best_likelihood
# because we are using np.log(likelihood) and np.log(best_likelihood)
# np.exp(a)/np.exp(b) = np.exp(a - b)
# if a > b, then np.exp(a - b) > 1

# Log-Sum-Exp Trick
max_likelihood = max(all_participant_ln_likelihood,

current_accepted_likelihood)
prob_of_accepting_new_order = np.exp(

(all_participant_ln_likelihood - max_likelihood) -
(current_accepted_likelihood - max_likelihood)

)

# it will definitly update at the first iteration
if np.random.rand() < prob_of_accepting_new_order:

acceptance_count += 1
current_accepted_order = new_order
current_accepted_likelihood = all_participant_ln_likelihood
current_accepted_order_dict = current_order_dict

acceptance_ratio = acceptance_count*100/(_+1)
all_current_accepted_order_dicts.append(current_accepted_order_dict)

# if _ >= burn_in and _ % thining == 0:
if (_+1) % 10 == 0:

formatted_string = (
f"iteration {_ + 1} done, "
f"current accepted likelihood: {current_accepted_likelihood}, "
f"current acceptance ratio is {acceptance_ratio:.2f} %, "
f"current accepted order is {current_accepted_order_dict.values()}, "

)

return all_current_accepted_order_dicts

n_shuffle = 2
iterations = 10
burn_in = 2
thining = 2

base_dir = os.getcwd()
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print(f"Current working directory: {base_dir}")
data_dir = os.path.join(base_dir, "data")
conjugate_priors_dir = os.path.join(base_dir, 'conjugate_priors')
temp_results_dir = os.path.join(conjugate_priors_dir, "temp_json_results")
img_dir = os.path.join(conjugate_priors_dir, 'img')
results_file = os.path.join(conjugate_priors_dir, "results.json")

os.makedirs(conjugate_priors_dir, exist_ok=True)
os.makedirs(temp_results_dir, exist_ok=True)
os.makedirs(img_dir, exist_ok=True)

print(f"Data directory: {data_dir}")
print(f"Temp results directory: {temp_results_dir}")
print(f"Image directory: {img_dir}")

if __name__ == "__main__":

# Read parameters from command line arguments
j = 200
r = 0.75
m = 3

print(f"Processing with j={j}, r={r}, m={m}")

combstr = f"{int(j*r)}|{j}"
heatmap_folder = img_dir

img_filename = f"{int(j*r)}-{j}_{m}"
filename = f"{combstr}_{m}"
data_file = f"{data_dir}/{filename}.csv"
data_we_have = pd.read_csv(data_file)
n_biomarkers = len(data_we_have.biomarker.unique())

if not os.path.exists(data_file):
print(f"Data file not found: {data_file}")
sys.exit(1) # Exit early if the file doesn't exist

else:
print(f"Data file found: {data_file}")

# Define the temporary result file
temp_result_file = os.path.join(temp_results_dir, f"temp_results_{j}_{r}_{m}.json")
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# temp_result_file = f"{temp_results_dir}/temp_results_{j}_{r}_{m}.json"

dic = {}

if combstr not in dic:
dic[combstr] = []

accepted_order_dicts = metropolis_hastings_with_conjugate_priors(
data_we_have,
iterations,
n_shuffle,

)

utils.save_heatmap(
accepted_order_dicts,
burn_in,
thining,
folder_name=heatmap_folder,
file_name=f"{img_filename}",
title=f'heatmap of {filename}')

most_likely_order_dic = utils.obtain_most_likely_order_dic(
accepted_order_dicts, burn_in, thining)

most_likely_order = list(most_likely_order_dic.values())
tau, p_value = kendalltau(most_likely_order, range(1, n_biomarkers + 1))

dic[combstr].append(tau)

# Write the results to a unique temporary file inside the temp folder
with open(temp_result_file, "w") as file:

json.dump(dic, file, indent=4)
print(f"{filename} is done! Results written to {temp_result_file}")

Current working directory: /Users/hongtaoh/Desktop/github/ebmBook
Data directory: /Users/hongtaoh/Desktop/github/ebmBook/data
Temp results directory: /Users/hongtaoh/Desktop/github/ebmBook/conjugate_priors/temp_json_results
Image directory: /Users/hongtaoh/Desktop/github/ebmBook/conjugate_priors/img
Processing with j=200, r=0.75, m=3
Data file found: /Users/hongtaoh/Desktop/github/ebmBook/data/150|200_3.csv
150|200_3 is done! Results written to /Users/hongtaoh/Desktop/github/ebmBook/conjugate_priors/temp_json_results/temp_results_200_0.75_3.json
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9.2 Result

We plot the resulting 𝑆 probalistically using a heatmap.

Figure 9.2: Result of Conjugate Priors

dic

{'150|200': [0.28888888888888886]}
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10 Final Results

We only used 10 iterations in the previous three chapters to demonstrate how our algorithm
works. However, to get them to really work, we need to run several thousand iterations.

Also, to cancel out noises and randomness, we need to use all the fifty variations of data.

With the help of The Center for High Throughput Computing at the University of Wisconsin-
Madison, we were able to run these tests. In the following, we present our results.

Figure 10.1: Results of Hard K-Means
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Figure 10.2: Results of Soft K-Means
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Figure 10.3: Results of Conjugate Priors
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From the two results, we are able to see that it is better to have more participants, because
that offers more information for our models. In terms of healthy ratio, it seems 50% is a sweet
spot.

Also, we notice that conjugate priors perform better than soft K-Means.

We also tested the two algorithms developed by UCL POND group with the same 750 datasets:
EBM Basic and KDE EBM. See the following for results:

Figure 10.4: Results of EBM

The parameters we used in the package of ebm are:

• n_iter = 10000
• greedy_n_iter=10
• greedy_n_init=5

More specific configurations can be found at https://github.com/hongtaoh/ucl_ebm/blob/master/implement/calc_tau_basic.ipynb
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Figure 10.5: Results of KDE EBM
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The parameters we used in the package of kde-ebm are:

• n_iter = 10000
• greedy_n_iter=10
• greedy_n_init=5

More specific configurations can be found at https://github.com/hongtaoh/ucl_kde_ebm/blob/master/implement/calc_tau_basic.ipynb

We can see that the performance of KDE EBM is more stable but EBM basic performs well
when the healthy ratio is below 50%.

Neither of these methods had results as good as conjugate priors. We have to point out
that, even though their accuracy is not as high, their speed is really high. Both of these two
algorithms can generate results with a single laptop GPU in just one hour; however, it might
take days for our algorithms.
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